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Non-TPMT determinants of azathioprine toxicity  
in inflammatory bowel disease

K. Katsanos, E.V. Tsianos

SUMMARY

Azathioprine (AZA) follows three metabolic routes: the first 
is the route to 6-thioguanine (TGN) catalyzed by thiopu-
rine methyltransferase (TPMT) and the other two routes are 
S-methylation to methylmercaptopurine catalyzed also by 
TPMT or oxidation to thiouric acid via the enzyme xanthine 
oxidase. Bone marrow toxicity (BMT) mainly in the form of 
leucopenia represents a major adverse event during AZA 
therapy in inflammatory bowel disease (IBD). Single nucle-
otide polymorphisms (SNPs) in the TPMT gene locus affect-
ing 6-TGN intracellular accumulation play a significant role 
in the occurrence of side effects including BMT. Conflicting 
data exist regarding the role of TPMT genotyping or TPMT 
enzyme activity in predicting AZA toxicity. Although some 
BMT cases can be explained by TPMT genotyping or enzyme 
activity in the majority of cases BMT remains unexplained. 
These limitations in TPMT testing pointed out to other genes 
involved in AZA metabolization. Many non-TPMT genes 
were investigated but their clinical importance is controver-
sial. To explore the applicability of TPMT and non-TPMT ge-
notyping for AZA toxicity monitoring, large prospective stud-
ies are needed. Until the results of such studies are available, 
the dose adjustments of AZA should be guided primarily by 
clinical response and peripheral blood counts.

Key words: inflammatory bowel disease, azathioprine, toxic-
ity, efficacy, TPMT, non-TPMT genes, single nucleotide poly-
morphisms.

1. AZAThIOPRINe MeTABOlIZATION AND 
MeChANISM Of ACTION

Azathioprine (AZA) or 6-(1-Methyl-4-nitroimidazol-
5-ylthio) purine [Prepn: Hitchings, Elion G., U.S patent 
3,056,785 (1962)] after its ingestion can follow three com-
petitive metabolic routes: the first is the route to 6-TGN 
catalyzed by TPMT and the other two routes are S-meth-
ylation to methylmercaptopurine (6-MMP pathway) cat-
alyzed also by TPMT or oxidation to thiouric acid via the 
enzyme xanthine oxidase (XO). The route of aldehyde ox-
idase (AOX) is also regarded as an additional metaboliza-
tion route (Figure 1).1 

Azathioprine is metabolized via 6-MP and 6-TGN into 
6-Thio-GTP. 6-Thio-GTP binds to the small GTPase Rac1. 
GTPases seem to coordinate many of the steps in the che-
motactic response of leukocytes (Figure 2).2 Upon hydro-
lysis, 6-Thio-GDP bound to Rac1 inhibits Vav guanosine 
exchange activity leading to accumulation of 6-Thio-GDP-

1st Department of Intenal Medicine & Hepato-Gastroenterology 
Unit, University Hospital of Ioannina, Greece 

Author for correspondence:
Prof. E.V. Tsianos, Professor of Internal Medicine, 1st Department 
of Internal Medicine, Medical School,University of Ioannina, 
Leoforos Panepistimiou, 45110 Ioannina, Greece,  
Tel: 0030-26510-097501, Fax: 00-30-26510-097016,  
e-mail: etsianos@uoi.gr

Abbreviations: 
AOX=aldehyde oxidase
AZA=azathioprine
BMT=bone marrow toxicity
CD=Crohn’s disease
GTP=gouanine-thophospatase
HPRT= hypoxanthine phosphoribosyltransferase 
IBD=Inflammatory Bowel Disease
ITPA=inosine triphosphatase
6-MP=6-mercaptopurine
MTHFR=methylene-tetrahydrofolate-reductase
SNP(s)=Single nucleotide polymorphism(s)
TPMT=thiopurine methyl transferase (gene)
TGN=thioguanine
UC=Ulcerative Colitis
XO/XDH=xanthine oxidase/xanthine dehydrogenase

TPMT alleles: 
TPMT *1=G238C
TPMT *3A=A719G and G460A
TPMT *3C=A719G



96 K. KATSANOS, E.V. TSIANOS

bound inactive Rac1 molecules, blockade of GTP incorpo-
ration into Rac1 and, consecutively, suppression of Rac1 
functions on T cell (Figure 3).3 Data is lacking regarding 
the route and mechanisms of AZA intracellular accumu-
lation after oral ingestion.

2. AZAThIOPRINe-RelATeD BONe 
MARROw TOxICITY 

Azathioprine is an effective drug for maintenance of 
remission in inflammatory bowel disease (IBD), howev-
er it is associated with a number of side effects (Table 1). 
The incidence in the published series of AZA-related ad-
verse events ranges from 5-25%.4

Bone marrow toxicity (BMT) mainly in the form of 
leucopenia represents a major adverse event during AZA 
therapy in inflammatory bowel disease (IBD). Bone mar-
row toxicity (BMT) is defined as the occurrence of one at 
least of the following: leucopenia, anemia.5 

The frequency of leucopenia has been reported up to 

10% in AZA-treated IBD patients and nine retrospective 
studies 6-14 have reported an overall frequency of leuco-
penia of 3.2% in IBD patients treated with AZA or 6-MP. 
It is noteworthy that the definition of leucopenia varies 
among studies (Table 2).

Leucopenia is usually reversible after AZA dose reduc-
tion but in some patients AZA has to be withdrawn. Leu-
copenia occurs when 6-thioguanine (6-TGN), the active 
product of AZA, is highly accumulated in tissues, includ-
ing bone marrow tissue. According to the largest study on 
AZA therapy in IBD patients, BMT may occur at any time 
during the treatment (range 2 weeks-11 years after starting 
the drug) either suddenly or over several months.10 Fur-
thermore BMT is associated with significant co-morbidity 
mainly in the form of viral infections15 (Table 3).

3. VAlUe Of TPMT GeNe AND TPMT 
eNZYMe ACTIVITY

The human TPMT gene, consisting of 10 exons, is lo-
cated on chromosome 6p22.3. A pseudogene for this lo-

figure 1. Enzymes involved in azathioprine/6-MP/6-TGN metabolization steps (Katsanos K, 2006).
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cus is located on chromosome 18q.The hereditary nature 
of the TPMT deficiency in humans was initially identified 
in a study of TPMT activity in red blood cells.1

Clinically sound pharmacogenetic studies over the last 
two decades have shown that single nucleotide polymor-
phisms (SNPs) in the TPMT gene locus affecting TGN in-
tracellular accumulation play a significant role in the oc-
currence of various side effects including BMT.

The allele TPMT*3B has only the G460A mutation 
and leads to a ninefold reduction in catalytic activity. 
TPMT*3C only has the A719G mutation, which is asso-
ciated with a 1.4 –fold reduction in activity. The presence 
of both G460A and A719G, for example TPMT*3A, leads 
to complete loss of TPMT activity. Another allele TPMT*2 
(G238C) results from transversion, leading to 100-fold re-
duction in catalytic activity.16

Because hematopoietic tissues have low or undetect-
able xanthine oxiadase activity, TPMT is the only remain-
ing inactivation pathway for thiopurines in these tissues. 
In fact, individual differences in TGN accumulation after 
drug therapy have been shown to be associated with bone 
marrow toxicity. The cellular accumulation of TGN nu-
cleotides is inversely proportional to TPMT activity, since 

high TPMT activity results in more drugs to the methyla-
tion pathway, leaving less for activation to cytotoxic TGNs. 
Conversely, TPMT-deficient patients accumulate very high 
TGN concentrations in tissues, including red blood cells. 

Subsequently the use of standard doses of thiopurine drugs 
in patients with complete TPMT deficiency could be haz-
ardous or even fatal due to bone marrow toxicity. 

4. TPMT TeSTING lIMITATIONS

Conflicting data exist as to whether TPMT genotype or 
TPMT activity are useful in predicting common adverse 
events to AZA. There are many studies in favour16-25 or 
against 7,9,26-29 the clinical importance of TPMT genotyp-
ing and TPMT enzyme activity measurement in AZA-
treated patients.

Although some BMT cases can be explained by TPMT 
genotyping or TPMT enzyme activity, measurements in the 
majority of cases leucopenia cannot be attributed to usu-
al TPMT variants (TPMT*2, TPMT*3A and TPMT*3C) 
which account for 80-95% of indermediate or low TPMT 
enzyme activity cases.6, 15 Of interest, the frequency of pat-
tern of mutant TPMT alleles is different among various 
ethnic populations. 

figure 2. Regulation of chemotaxis of T-lymphocyrtes by Rho GTPases. Shown is the coordination of the many steps in the chemo-
tactic response of leukocytes. Cdc42 (and perhaps Rac1) sense the chemotactic factor gradient and polarize the cytoskeletal machinery 
(Katsanos K. 2007, modified from Bokoch G. Trends in Cell Biology 2005;15:165)
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In addition to this, it seems that there is a high degree 
of variability in TPMT activity within both the homozy-
gous wild type and heterozygous groups, some individ-
uals with a heterozygous genotype exhibit high activity 
whereas some homozygous wild type subjects exhibit an 

intermediate phenotype; attention has to be paid also to 
transfused individuals.30 

The induction of TPMT activity after commencement 
of AZA therapy remains controversial.17, 31-32 After initi-
ation of thiopurine therapy by a fixed dosing schedule, 
no general induction of TPMT enzyme activity occurred, 
however, TPMT gene expression decreased. In addition, 
TPMT activity and the concentration of thioguanine nu-
cleotides were higher in children than in adults.33 

A recent study study could not demonstrate a clear re-
latioship between 6-TGN concentrations on one hand and 
toxicity and efficacy on the other, as exist in AZA and 6-
MP-treated patients. No relationship between 6-TGN con-

figure 3. Model of azathioprine-mediated immunosuppression. 
Azathioprine is metabolized via 6-MP and 6-TGN into 6-Thio-
GTP. 6-Thio-GTP binds to the small GTPase Rac1. Upon hy-
drolysis, 6-Thio-GDP bound to Rac1 inhibits Vav guanosine ex-
change activity leading to accumulation of 6-Thio-GDP-bound 
inactive Rac1 molecules, blockade of GTP incorporation into 
Rac1 and, consecutively, suppression of Rac1 functions on T 
cell (Katsanos K. 2007, modified from Poppe D, et al. J Immu-
nol 2006;176:649). 

Table 1. Reasons for azathioprine/6-MP discontinuation in in-
flammatory bowel disease (reference No 15).
Reasons for azathioprine  
discontinuation 

No patients 
(n=229)

%

Ineffectiveness/non-response 56 24.4
Gastrointestinal/general intolerance 40 17.5
Pancreatic toxicity 24 10.5
Hepatotoxicity 22 9.7
Bone marrow toxicity 16 7.0
Severe infection 14 6.1
Pregnancy 14 6.1
Flu-like symptoms 13 5.7
Long-term disease remission* 12 5.2
Skin allergy 11 4.8
Cancer/precancerous/lymphoma** 4 1.7
Rare causes*** 2 0.9
Death from other than IBD cause 1 0.4

 * More than 5 years of complete disease remission.
 ** One patient with breast cancer, one with cerebral hemangio-

blastoma one with intracranial B-cell lymphoma and one with 
colorectal cancer.

 *** One patient with increase of creatinine kinase and one with mul-
tiple sclerosis.

Table 2. Frequency of leucopenia in IBD patients treated with thiopurine drugs (reference 74 modified).
Author No patients Number of leucopenia requiring  

drug withdrawal (%)
Definition of leucopenia Deaths

Ansari8 106 2 (1.9) N<2.0 0
Schwab9 93 4 (4.3) WCC<3.0 0
Connel10 739 28 (3.8) WCC<3.0 2
Fraser11 622 21(3.4) WCC<3.0 0
Present12 396 8 (2) WCC<2.5 0
Bouhnik13 157 3 (1.9) WCC<3.0 0
Qasim14 110 5 (5.5) WCC<3.0 0
Katsanos15 740 14 (6.1) WCC<3.9 0
Total 2223 71(3.2) 2
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centrations and efficacy or toxicity of AZA was demon-
strated.34

5. GeNeTIC NON-TPMT DeTeRMINANTS 
Of AZA TOxICITY

These limitations of TPMT testing lead investigators to 
other genes and their variants involved in AZA metaboliza-
tion steps which could probably alter the 6-TGN flow to 
target cells. These enzymes were investigated in the hope 
of explaining many of the unexplained cases of BMT in 
patients with inflammatory bowel disease treated with aza-
thioprine. Many genes have been so far investigated but 
their importance still remains controversial

MDR1 gene (multi-drug resistance) 
The membrane-associated protein encoded by this gene 

is a member of the superfamily of ATP-binding cassette 
(ABC) transporters. ABC proteins transport various mol-
ecules across extra- and intra-cellular membranes. ABC 

genes are divided into seven distinct subfamilies. This pro-
tein is a member of the MDR/TAP subfamily. Members of 
the MDR/TAP subfamily are involved in multidrug resist-
ance. The protein encoded by this gene is an ATP-depend-
ent drug efflux pump for xenobiotic compounds with broad 
substrate specificity. It is responsible for decreased drug 
accumulation in multidrug-resistant cells and often me-
diates the development of resistance to anticancer drugs. 
This protein also functions as a transporter in the blood-
brain barrier.35 Recently MDR1 polymorphisms have been 
associated with inflammatory bowel disease36 and accord-
ing to one study MDR1 G2677T SNP has been associated 
to gastrointestinal intolerance to azathioprine.37 

ITPA gene (inosine triphosphatase)
ITPA gene has 8 exons.The protein encoded by this 

gene hydrolyzes inosine triphosphate and deoxyinosine 
triphosphate to the monophosphate nucleotide and diphos-
phate. The encoded protein, which is a member of the 
HAM1 NTPase protein family, is found in the cytoplasm 

Table 3. Infections in IBD patients during AZA-related bone marrow toxicity. (reference No 15)
No IBD Sex Age No of infections  Severe infections (hospitalized) Non severe infections (outpatient)
1 UC M 38 1 bronchitis 
2 CD F 41 1 sinusitis
3 CD F 48 1 HSV(+) bilateral bronchiolitis* 
4 CD F 25 1 sinusitis
5 CD M 33 1 bronchitis
6 CD M 48 2 sinusitis & bronchiolitis 
7 UC M 39 1 grippal syndrome
8 CD F 21 1 bronchiolitis
9 CD M 10 1 infected cyst in front head 
10 CD F 22 1 gastroenteritis
11 UC F 37 1 grippal syndrome
12 CD M 28 1 grippal syndrome

13 CD M 19 1
EBV(+) upper respiratory tract  
infection

14 CD F 45 1 grippal syndrome
15 CD M 42 1 grippal syndrome
16 CD F 38 1 pharyngitis 
17 CD M 54 2 bronchitis twice 
18 CD M 46 1 grippal syndrome**
19 CD F 53 1 HSV(+) infection 
20 UC M 14 1 recurrent skin infections
21 CD M 20 1 toe infection (local surgery)
22 CD F 28 2 Mycoplasma** pneumonia pharyngitis 
23 CD F 23 1 microbial pneumonia
24 CD F 33 2 sinusitis & grippal syndrome
25 CD F 10 1 viral enteritis
26 CD F 30 1 herpes fabialis
27 CD F 21 1 severe sepsis 

*combined azathioprine-infliximab therapy, **combined azathioprine-steroids therapy
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and acts as a homodimer. Defects in the encoded protein 
can result in inosine triphosphate pyrophosphorylase de-
ficiency. Two transcript variants encoding two different 
isoforms have been found for this gene. Also, at least two 
other transcript variants have been identified which are 
probably regulatory rather than protein-coding.

ITPase (inosine triphosphatase) deficiency is not as-
sociated with any defined pathology other than the char-
acteristic and abnormal accumulation of ITP in red blood 
cells. Nevertheless, ITPase deficiency may have pharma-
cogenomic implications, and the abnormal metabolism 
of 6-MP in ITPase deficient patients may lead to thiopu-
rine drug toxicity. 

The 94C>A transversion in exon 2 results in a Pro32-
to-Thr (P32T) substitution. This SNP has a varying fre-
quency in other ethnic groups.38-39 The frequency of this 
polymorphism is higher in Japanese, Chinese and East In-
dian origin populations compared to Caucasians

Homozygous deficient individuals have complete de-
ficient erythrocytre ITPAse activity accompanied by ac-
cumulation of ITP in red blood cells. In addition ITPase 
deficient heterozygotes showed a 22.5% ITPase activity 
of the control value, consistent of a dimeric structure of 
ITPase. There are studies in favour 40-42 or against 28, 43 the 
value of this SNP to predict toxicity or even BMT in AZA-
treated IBD patients. 

Regarding the IVS2+21A/C SNP the activities of 
IVS2+21A/C heterozygotes and 94C/A-IVS2A/C com-
pound heterozygotes were 60% and 10% respectively, of 
the normal control mean suggesting that the intron muta-
tion affects enzyme activity.44 However, it has been sug-
gested that subjects with complete deficiency of ITP-ase 
activity have elevated ITP concentrations in erythrocytes 
but no obvious clinical abnormalities.45-46

Rac1 gene
Rac1 is a member of the Rho family of small GTPas-

es involved in signal transduction pathways that control 
proliferation, adhesion and migration of cells during em-
bryonic development and invasiveness of tumor cells. The 
Rac1 gen comprises 7 exons over a length of 29kb and is 
localized to chromosome 7p22. 47

The protein encoded by this gene is a GTPase which 
belongs to the RAS superfamily of small GTP-binding 
proteins. Members of this superfamily appear to regulate 
a diverse array of cellular events, including the control of 
cell growth, cytoskeletal reorganization48-49 and the acti-
vation of protein kinases.50 Several alternatively spliced 
transcript variants of this gene have been described, but 

the full-length nature of some of these variants has not 
been determined.

MTHFR gene (methylenetetrahydrofolate 
reductase)

Methylenetetrahydrofolate reductase (EC 1.5.1.20) cat-
alyzes the conversion of 5,10-methylenetetrahydrofolate 
to 5-methyltetrahydrofolate, a cosubstrate for homocys-
teine remethylation to methionine.

Methylenetetrahydrofolate reductase (MTHFR) plays 
a central role in the metabolism of folate. Deficiency of 
MTHFR leads to homocysteinemia. Fourteen rare muta-
tions of MTHFR have been associated with severe MTH-
FR deficiency, hyperohomocysteinemia, homocystinuria 
with many vascular and neurologic defects.51 

Genetic polymorphisms that decrease MTHFR ac-
tivity result in the depletion of 5-methylenetetrahydro-
folate for homocysteine remethylation and the accumu-
lation of 5,10-methylenetetrahydrofolate, the precursor 
for thymidylate and purine synthesis.52 A decrease in ac-
tivity due to genetic polymorphisms would thus tend to 
favour DNA synthesis over DNA methylation pathways 
when folate intake is adequate. MTHFR merits further 
study whether a true protective effect, perhaps mediat-
ed through limiting production of methylated metabo-
lites, might exist. A study in liver transplants under AZA 
therapy MTHFR genotypes (677C>T and 1298A>C) did 
not predict adverse drug reactions, including bone mar-
row toxicity.53

AOX gene (aldehyde oxidase)
Aldehyde oxidase produces hydrogen peroxide and, 

under certain conditions, can catalyze the formation of 
superoxide. Up to date there is no study on the impact of 
AOX SNPs in AZA toxicity. 

XO/XDH gene (xanthine oxidase /xanthine 
dehydrogenase)

The xanthine oxidase /xanthine dehydrogenase enzyme 
system (XO/XDH) belongs to the group of molybdenum-
containing hydroxylases and plays an important role in pu-
rine metabolism, iron uptake and transport as well as in 
the defence against microbial agents. XDH/XO catalyz-
es the oxidation of hypoxanthine to xanthine, and subse-
quently to uric acid.54 

The enzyme is a homodimer. Xanthine dehydrogenase 
can be converted to xanthine oxidase by reversible sulf-
hydryl oxidation or by irreversible proteolytic modifica-
tion. The XO/XDH gene contains 36 exons and allelic var-
inats of these gene have been described in patients with 
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xanthinuria type I and may contribute to adult respiratory 
stress syndrome, and may potentiate influenza infection 
through an oxygen metabolite-dependent mechanism.55 
Up to date there is no study on the impact of XO/XDH 
SNPs in AZA toxicity. 

HPRT1 gene (hypoxanthine 
phosphoribosyltransferase type 1) 

HPRT maps to Xq26-q27.2 and consists of nine exons. 
HPRT enzyme activity is required for the phosphorylation 
of hypoxanthine and guanine, salvaging them for nucleic 
acid biosynthesis. It also phosphoribosylates purine ana-
logues which is a necessary step for their cytotoxicity. Mu-
tations have been identified in males with brothers with 
hyperuricemia and nephrolithiasis, gout and Lesch-Nyan 
syndrome while high frequency of deletions at the HPRT 
locus has been described in an ataxia-telangiectasia lym-
phoblastoid cell line irradiated with gamma-rays and in 
paroxysmal nocturnal hemoglobinuria.56-57 

Interestingly, the resistance of cells to 6-TG is an in-
dicator of HPRT mutations. In vivo mutations in T cells 
are now used to monitor humans exposed to environmen-
tal mutagens with analyses of moleculal mutational spec-
tra serving as adjuncts for determining causation. Most 
recently HPRT is finding use in studies of in vivo selec-
tion for in vivo mutations arising in either somatic or ger-
minal cells. 

Resistance to purine analogues provides a highly ef-
ficient selective system for HPRT mutant cells allowing 
them to grow while wild-type cells are killed. The selec-
tion is phenotypic, cells with a non-functioning or poorly 
functioning enzyme will be resistant to the toxic effects 
of 6-TG or AZA. Conversely, HPRT mutant cells, lack-
ing the salvage pathway are dependent on de novo purine 
biosynthesis for synthesis of nucleic acids.56 

Transition mutations at CpG dinucleotides are the most 
frequent in vivo spontaneous single-base substitution mu-
tation in the human HPRT gene. The rate of increase in mu-
tant frequency is greater in children than in adults, consistent 
with the higher level of T-cell proliferation in children.58

Variants in HPRT have been described to be correlat-
ed with sunlight levels and that are induced during ex-
posure to electromagnetic fields, while more than 1,000 
variants have been so far described and are available in a 
special datadase.59 

IMPD(H)1 gene (inosine-5-prime-
monophosphate dehydrogenase type 1)

Inosine-5-prime-monophosphate dehydrogenase type 
1 [IMPD(H)1] catalyzes the formation of xanthine mo-

nophosphate from inosine-monophosphatase (IMP). In 
the purine de novo synthetic pathway, IMP dehydroge-
nase is positioned at the branch point in the synthesis 
of adenine and guanine nucleotides and is thus the rate-
limiting enzyme in the de novo synthesis of guanine nu-
cleotides. Among 3 families with autosomal dominant 
retinitis pigmentosa linked to 7q chromosome, a G to 
A transition at codon 226 of the IMPDH1 gene, substi-
tuting an asparagine for an aspartic acid has been de-
scribed suggesting that this mutation may be highly del-
eterious.60 

6. NON-TPMT NON-GeNeTIC 
DeTeRMINANTS Of AZA TOxICITY

Concommitant to AZA therapy has been also suggest 
to affect 6-TGN concentrations and by consequence to 
predict BMT. In vitro studies have suggested that 5-ASA 
regimens could be potential TPMT inhibitors.61-63 Clin-
ically higher thioguanine levels have been seen in pa-
tients concomitantly taking certain 5-ASAs along with 
AZA/6-MP.64-65 However this was not observed in all 
studies17,27,66 The administration of allopurinol affects 
AZA metabolism by inhibiting XO/XDH enzyme and 
thus increasing the flow towards 6-TGN,67 furosemide 
increases BMT by TPMT inhibition while angiotensin 
converting enzyme inhibitors can increase BMT dur-
ing AZA treatment by a still unknown mechanism.68 
A study showed that 6-TGN levels were significantly 
higher and WBC significantly lower within 1-3 weeks 
after IFX infusion69 while the prolonged use of trimeth-
oprim-sulfamethoxazole may result in life-threatening 
hematotoxicity.70

7. fUTURe PeRSPeCTIVeS IN ReSeARCh 

Other factors possibly explaining BMT in our pa-
tients could be rare TPMT variants. For example, re-
cently, TPMT*20, *21, *22 variants have been associat-
ed with intermediate red blood cell TPMT activity.71 We 
should also appreciate individual differences in TGN 
accumulation14,30,72 as well as other regulators of TPMT 
activity such as promoter polymorphisms, viral infec-
tions, patient age33 or other still unknown environmental 
factors phenotype.31 Other SNPs in other genes may be 
proving of importance in explaining many of the unex-
plained cases of BMT in IBD patients treated with thio-
purine drugs. 

The discovery and characterization of the TPMT poly-
morphism grew directly out of pharmacogenomic studies 
of catechol-O-methyltransferase (COMPT).73

xx xx xx xx x xx
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8. CONClUSIONS fOR ClINICAl 
PRACTICe

Although it seems that the TPMT testing cannot safe-
ly predict myelotoxicity cases it has the potential for ear-
ly warning of early severe leucopenia in TPMT homozy-
gous recessive patients as well as of identifying patients 
who might benefit from higher AZA doses.4,61,74 We sug-
gest that patients homozygous for one or more TPMT vari-
ants are at a very high risk of early severe leucopenia and 
thus, they have to avoid AZA.

In the future, pharmacogenetic studies will need to fo-
cus not only on drug metabolism (pharmacokinetics) but 
also on drug targets (pharmacodynamics) or both.

To explore the applicability of TPMT and non-TPMT 
genotyping, 6-MMP and 6-TGN levels for therapeutic 
drug monitoring, large prospective studies are needed. Un-
til the results of such studies are available, the dose ad-
justments of AZA should be guided primarily by clinical 
response and peripheral blood counts.
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