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Abstract

Nonalcoholic fattyliver disease (NAFLD) is considered one of the most common chronicliver diseases.

Modern lifestyle, characterized by increasing rates of obesity and type 2 diabetes mellitus (T2DM),
has led to a “pandemic” of NAFLD that imposes a personal health and socioeconomic burden.
Apart from overnutrition and insulin resistance, various metabolic aberrations, gut microbiota and
genetic predispositions are involved in the pathogenesis of the disease. The multifactorial nature of
NAFLD’s pathogenesis makes the development of pharmacological therapies for patients with this
disease challenging. Sodium-glucose co-transporter 2 inhibitors (SGLT-2i) are antidiabetic agents
that reduce blood glucose mainly by increasing its renal excretion. As T2DM is one of the major
contributors to NAFLD, SGLT-2i have emerged as promising agents for the management of NAFLD.
In this review, we summarize the main animal studies on SGLT-2i in models of NAFLD.
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Introduction

The modern lifestyle of the so-called “Western World”
has led to novel health concerns. New diseases have emerged,
including nonalcoholic fatty liver disease (NAFLD), one of the
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most common chronic liver diseases [1]. The prevalence of
NAFLD has been increasing in recent years and is estimated
to be 25-30% worldwide [2]. There appears to be a preference
for the elderly and men of younger ages, whereas its rates are
similar in men and women after menopause [3]. The rising
prevalence is partially explained by the increase in the rates of
obesity and type 2 diabetes mellitus (T2DM) [4,5]. In patients
with these conditions, the prevalence of NAFLD can be over
90% and 55%, respectively [6]. However, a considerable
percentage of non-obese individuals also develop NAFLD [7].

Histologically, NAFLD is characterized by liver fat
accumulation in at least 5% of the hepatocytes, after excess
alcohol consumption and other hepatic diseases, such as viral
and autoimmune hepatitis, and drug-induced liver injury
having been ruled out [8]. Thus, the diagnosis of NAFLD is
based on the exclusion of certain diseases causing secondary
fatty liver: this has motivated many researchers to pursue a new
definition and a diagnosis based on definite criteria (positive
diagnosis) rather than the exclusion criteria (negative diagnosis)
[9]. Two nomenclatures were most prevalent over the years and
were published in consensuses: 1) metabolic (dysfunction)-
associated fatty liver disease (MAFLD) [10,11]; and 2) metabolic
dysfunction-associated steatotic liver disease (MASLD) [12].
However, there is still controversy over the most appropriate
definition of the disease. Furthermore, most existing studies
have used the term and criteria of NAFLD. Therefore, for the
purposes of this review we adopted the term NAFLD.
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Simple hepatic steatosis, known as nonalcoholic fatty
liver (NAFL), may progress to nonalcoholic steatohepatitis
(NASH), characterized by the addition of inflammation and
hepatocellular ballooning, and even to hepatic fibrosis and
cirrhosis [8]. NASH patients are reported to be 2-6% worldwide
and among them 21-50% have advanced fibrosis, whereas 7% of
all NAFLD patients develop advanced fibrosis [6]. The need to
efficiently manage NAFLD derives from its higher hepatic (e.g.,
cirrhosis, hepatocellular carcinoma, hepatic failure) and extra-
hepatic (cardiovascular diseases, chronic kidney disease and
extra-hepatic malignancies) morbidity and mortality [13-15].

Despite the large number of studies and the variety of
agents that have been investigated or are under investigation,
until recently there was no approved treatment specifically for
NAFLD [16-19]. Ideally, we need a medication that improves
both NAFLD (liver function tests and histology) and related
metabolic aberrations [20,21]. In this regard, sodium-glucose
co-transporter 2 inhibitors (SGLT-2i) are antidiabetic drugs
with potentially beneficial effects on liver steatosis [21]. In this
review, after a brief summary of the main pathophysiologic
contributors to NAFLD, we aim to focus on data derived from
animal studies that investigated the potential therapeutic
effects of SGLT-2i on NAFLD.

Pathophysiologic mechanisms in NAFLD

Following the previously suggested “2-hit hypothesis”,
which claimed that one pathogenic contributor leads
to the development of hepatic steatosis, while a second
pathogenic contributor leads to the progression to hepatic
inflammation and fibrosis, the most prevalent model for the
pathophysiology of NAFLD is that suggested by the “multiple-
hit hypothesis” (Fig. 1) [22,23]. The pathogenesis of NAFLD
is multifactorial, with numerous factors acting in parallel,
thus leading to the development of hepatic steatosis and the
progression to advanced disease [17]. Overnutrition leads
to the intrahepatic accumulation of high concentrations of
free fatty acids and lipid metabolites that exceed the liver’s
capacity to appropriately oxidize or store them, thus leading
to lipotoxicity, oxidative stress and the production of reactive
oxygen species [5]. Consequently, inflammatory and apoptotic
pathways are activated, with fibrogenic potential [24]. Not
only overnutrition, but also obesity is related with NAFLD
development, a process complicated by the production of
adipokines, such as adiponectin and leptin, by the adipose
tissue [5,25-27]. Insulin resistance (IR) represents another
major contributor to the pathogenesis of NAFLD, since it leads
to oversupply of free fatty acids to the liver, as a result of the
increased lipolysis of adipose tissue triglycerides and hepatic
de novo lipogenesis [28,29]. In close association with IR, better
regulation of glucose levels also leads to an improvement
in NAFLD, and delays or even prevents its progression to
advanced disease [20]. It is important to note that dysbiosis of
gut microbiota stimulates hepatic inflammation via increased
absorption of endotoxins and by altering bile-acid metabolism
(gut-liver axis) [30].
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Figure 1 Brief pathophysiology of NAFLD. The pathophysiology
of NAFLD starts from lipid accumulation within the hepatocytes.
Insulin resistance, obesity and dyslipidemia are some of the major
contributors related to the pathogenesis of NAFLD. A high-calorie
diet rich in carbohydrates (especially fructose) and saturated fats may
promote hepatic steatosis, which may subsequently progress to hepatic
inflammation, fibrosis or even cirrhosis and HCC in some patients.
Long-standing hepatic steatosis predisposes for a mild but chronic
intra-hepatic inflammation, which enhances liver injury and may lead
to structural disorganization and fibrosis. NAFLD is also influenced
by alterations in the composition of the gut microbiota (dysbiosis)
or genetic factors, as well as other factors. Though the precise
mechanisms leading to NAFLD development and progression are not
fully understood, its pathophysiology is seemingly affected by complex
interactions among metabolic, environmental and genetic factors

HCC, hepatocellular carcinoma; NAFL, nonalcoholic fatty liver; NAFLD,
nonalcoholic fatty liver disease; NASH, nonalcoholic steatohepatitis

Pathophysiologic association of SGLT-2 inhibitors
with NAFLD

Sodium-glucose co-transporters (SGLTs) are responsible
for glucose transportation from the renal tubule to the adjacent
epithelial cells [31]. SGLT-2 is a protein expressed mainly in
the kidney, and more precisely in the luminal membrane of the
proximal renal tubules, that leads to the reabsorption of the
major proportion of glucose [31]. SGLT-2i are antidiabetic
medications that block SGLT-2, thus increasing the urinary
excretion of glucose, diminishing circulating glucose levels
independently of insulin secretion and, consequently, without
inducing hypoglycemia (Fig. 2) [32]. Better glycemic control,
reduction in insulin levels and a possible increase in glucagon
release render SGLT-2i potentially beneficial medications for
NAFLD [33]. Moreover, metabolic changes include decreased
triglycerides, enhanced lipolysis and elevated fat oxidation
supported by ketogenesis [34]. Taking these mechanisms into
consideration, it seems that SGLT-2i shift substrate utilization
from carbohydrate to lipid, and as we already know, the
alteration of lipid metabolism represents a crucial step in the
development and progression of NAFLD [34,35].

In addition to the previous actions, the elevated glucose
urinary excretion promotes osmotic diuresis, and eventually
natriuresis, uricosuria and calorie loss. The body weight
reduction could be considered a potentially useful contributor
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Figure 2 Potential mechanisms of actions of SGLT-2i in NAFLD. By glucose excretion in the urine, SGLT-2i lead to reduced blood glucose levels
and body weight loss, while the induced uricosuria diminishes circulating uric acid. Moreover, natriuresis, which occurs in parallel with glycosuria,
contributes to the reduction of blood pressure and plasma volume. These effects were shown to favor cardiorenal protection, but they may also be
beneficial against the development of steatosis and its progression to hepatic inflammation

NAFLD, nonalcoholic fatty liver disease; SGLT-2i, sodium-glucose co-transporter 2 inhibitors; CVD, cardiovascular disease

towards the improvement of NAFLD, as data indicated that
a weight loss of 7% or more decreases hepatic fat, and even
inflammation, while a 10% reduction may reverse hepatic
fibrosis [36]. Notably, natriuresis leads to decreases in blood
pressure and plasma volume, whereas uricosuria may protect
against chronic kidney disease and possibly atherosclerosis [37].

As we have already mentioned, SGLT-2 are responsible
for the glucose reabsorption in the kidney. Another type of
SGLT, SGLT-1, are also expressed in the kidney, but more
predominantly in the small intestine and are largely responsible
for glucose reabsorption from the small intestine [38]. The
administration of an SGLT-1i showed a protective effect
against the pathogenesis of NAFLD in a rodent model [39].
Moreover, SGLTs are also reported to be expressed in other
organs. SGLT-1 are also expressed in the heart and the skeletal
muscle, whereas SGLT-2 activity was detected in rat brain and,
in a more recent study, the hepatic expression of SGLT-2 was
found to be greater in NAFLD and NASH compared to normal
livers [38,40,41].

Collectively, SGLT-2i seem to have properties that may be
advantageous in the management of NAFLD. Furthermore,
initial data may indicate some favorable effects of SGLT-1i.
However, a great deal more data are needed to fully elucidate
the potentiality of SGLT-2i against NAFLD, and in this regard
animal studies are of high importance.
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Data from animal studies

Animal studies, conducted primarily on mice and rats,
have provided valuable insights into the effects of SGLT-2i
on NAFLD. Their main results are summarized here and in
Table 1.

Search strategy

We searched in the PubMed database using the search
string:  “((“Non-alcoholic ~ Fatty Liver Disease”[Mesh])
OR (“Fatty Liver’[Mesh]) OR (non-alcoholic fatty liver
disease) OR (nonalcoholic fatty liver disease) OR (fatty liver)
OR (hepatic steatosis) OR (nonalcoholic steatohepatitits) OR
(non-alcoholic steatohepatitis) OR NAFLD OR NASH OR
(liver fibrosis) OR (liver cirrhosis)) AND ((“Sodium-Glucose
Transporter 2 Inhibitors” [Mesh]) OR (sodium glucose co-
transporter 2 inhibitors) OR (SGLT2 inhibitors) OR SGLT2i
OR dapagliflozin OR empagliflozin OR canagliflozin OR
ipragliflozin OR luseogliflozin OR tofogliflozin)”, restricted
with the filter “Other Animals”. Using this string, 142 articles
were retrieved (last update March 20, 2024). The search was
extended to the reference lists of some of the selected articles.
Since this is a narrative review, the selection of the included
articles was based on the personal judgment of the authors,
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mainly according to their originality and their potential impact
on the field. Moreover, some more articles beyond this search
were added at the discretion of the authors, when this was
considered necessary for the flow of this review.

Dapagliflozin

Dapagliflozin was used in a few experimental models to
evaluate its effect on NAFLD. In db/db mice, steatosis was not
different from the control group, but dapagliflozin retained
the beta cell mass of the pancreas through the reduction of
glucotoxicity [42]. In contrast, in rat models dapagliflozin
histologically improved steatosis and inflammation, as well
as liver function tests, reportedly via inhibiting oxidative
stress [43,44].

Canagliflozin

Kabil et al reported a rat model, treated with nicotinamide
and streptozotocin to induce diabetes, that received a high-
fat diet (HFD) for 8 weeks [45]. The animals were then
categorized into 3 groups fed HFD and 3 groups on chow
diet (CD); 2 of the groups received the drug at a dose of 10 or
20 mg/kg [45]. Canagliflozin ameliorated steatosis, hepatic
weight, lipid storage in the liver and alanine aminotransferase
(ALT) in a dose-dependent manner. Canagliflozin also
reduced inflammatory cytokines and oxidative stress, as well as
inflammation and hepatocellular ballooning, compared to the
untreated group. In another study that used a melanocortin 4
receptor knock-out (MC4R-KO) mouse model fed a Western
diet, which is an IR and obesity model, canagliflozin was
reported to improve hepatocellular ballooning, NAFLD activity
score (NAS) and fibrosis (described by Sirius red stained area
percentage), but not hepatic steatosis and inflammation after
20 weeks of treatment [46]. After the initial 8 weeks, treated
mice increased calorie intake and body weight and decreased
ALT, but this was not accompanied by higher glucose and liver
weight compared to the untreated group. In this study, SGLT-
2 protein was found to be expressed in the central vein and
biliary tract and, importantly, a 52-week treatment was shown
to attenuate the occurrence of hepatocellular carcinoma.
In another study, after an initial period of 4 weeks on HFD,
obese mice were treated with placebo or orlistat (15 mg/kg)
or canagliflozin (60 mg/kg) [47]. In the canagliflozin group,
body weight was reduced after a 4-week interval; however, the
reduction in liver weight was not different compared to the
orlistat group. In contrast, the diabetic KK and lethal yellow
(Ay) mice (KK-Ay) of Yoshino et al demonstrated no reduction
in body weight, cholesterol or free fatty acids, but lower glucose
and triglyceride levels and liver weight compared to controls
over 4 weeks [48]. Lipid droplet accumulation and hepatic
triglycerides were improved in the canagliflozin group, while a
lipidomics analysis revealed that prostaglandin E2 and resolvin
E3, considered as lipid mediators, were elevated in the treated
group, which is suggested to improve fat deposition in the liver.
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Empagliflozin

Empagliflozin seems to be the most studied SGLT-2i in
animal studies of NAFLD; it thus seems reasonable that most
studies selected in this review (Table 1) referred to empagliflozin.
Jojima et al used diabetic mice fed on an HFD and treated with
empagliflozin for 3 weeks to show that NAS was lower in the treated
group compared to the untreated one [49]. However, there was
no difference in body weight or the expression of type 3 collagen
mRNA of mice treated with empagliflozin, although collagen
deposition was lower compared to the untreated control group. In
line with the aforementioned study, Meng et al reported lower NAS
in HFD fed mice on triglycerides for 8 weeks compared to controls
[50]. They also showed improvement in lipid droplet accumulation,
blood tests and expression of genes involved in lipogenesis and
oxidation in the same group. Petito-da-Silva et al administered
empagliflozin to HFD mice for 5 weeks, showing improvement in
steatosis, metabolic parameters, and lipogenic and endoplasmic
reticulum stress genes [51]. Other studies also showed steatosis
improvement by empagliflozin [52,53]. Interestingly, metabolomic
analysis of the impact of empagliflozin on mice fed an HFD reported
that empagliflozin affects lipid oxidation and lipid metabolism [54].
As for hepatic inflammation, Xu et al fed C57BL/6] mice with
CD, HFD and empagliflozin at a low dose of 3 and a high dose of
10 mg/kg body weight. They reported upregulated mRNA levels
of anti-inflammatory and M2 macrophage markers in the group
treated with empagliflozin [55], implying that empagliflozin favor
anti-inflammatory activity. Notably, the high dose of empagliflozin
ameliorated several morphologic and biochemical parameters more
than the low dose, thus indicating a dose-dependent relationship
with metabolic alterations. Interestingly, in apolipoprotein E
knock-out [ApoE(-/-)] mice on HFD, a 5-week treatment with
empagliflozin reduced steatosis, lobular inflammation and NAS
compared to controls [53]. Notably, neither group developed
fibrosis. The histological amelioration in steatosis and NASH was
linked with the lower expression of genes involved in lipogenesis and
inflammation. In line with this study, choline-deficient, L-amino
acid-defined, HFD C57BL/6] mice treated with empagliflozin for
5 weeks confirmed the alterations in inflammation, NAS, but also
fibrosis compared to the control group; surprisingly, no significant
difference between groups was observed in steatosis [ 56]. In contrast,
a 16-week study of C57BL/6 mice on an HFD, with added fructose
and sucrose in the drinking water, revealed no improvement
in body weight, aspartate aminotransferase, ALT, histological
parameters or NAS in the empagliflozin group compared to the
HED control group [57]. Other studies involving rodents confirmed
that empagliflozin did not show superiority and did not improve
histological outcomes compared to controls [58,59]. All in all, it
has been shown that empagliflozin exerts its favorable effects when
diabetes exists [57,60]. Notably, Kim et al used an experimental
model to show that choline-deficient C57BL/6N mice on HFD
developed NAFL after 8 weeks and NASH after 30 weeks [61].
Empagliflozin improved body and liver weight and ALT, compared
to the HFD control group, only when it was co-administered with
ezetimibe, but not as monotherapy [61]. In this study, steatosis
decreased at the stage of NAFL only when empagliflozin was
combined with ezetimibe, whereas no histological differences were
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shown in steatosis, inflammation or fibrosis in the empagliflozin-
treated group compared to controls, when the disease progressed
to NASH [61]. An important piece of research provided evidence
that SGLT-2 was not only present in the liver, but was also increased
in NAFLD, while its inhibition ameliorated NASH through
autophagy activation [41]. Furthermore, empagliflozin was shown
to ameliorate hepatic lipid accumulation and collagen deposition
[41]. Another pathway highlighting the anti-inflammatory and
antifibrotic effects of empagliflozin in NAFLD was demonstrated
in a rat model with downregulation of the nuclear factor-kappa
B (NF-kB)/sex determining region Y box 9 (SOX9)/osteopontin
axis, which reduced collagen accumulation, and in parallel to the
upregulation of hepatic osteocalcin through the inhibition of NF-
KB [62].

Ipragliflozin

Ipragliflozin was shown to improve hepatic steatosis, not
only in a rat model [63], but also in mouse models [64,65], even
independently of alterations of body weight [66]. Additionally,
improvement in fibrosis stage by ipragliflozin was also
demonstrated, without significant simultaneous changes in
inflammation [63]. Interestingly, histological improvements in
NAS parameters (hepatic steatosis, lobular inflammation) and
fibrosis, but not in hepatocellular ballooning, were observed
in a diabetic NASH-induced mouse model [64], while in
another mouse model histological improvement in steatosis,
inflammation and fibrosis were observed only in the groups
receiving high-dose ipragliflozin (3 mg/kg) compared to the
control group [65]. Finally, in the model reported by Honda
et al, ipragliflozin improved lipotoxicity and IR [64].

Other SGLT-2i

In accordance with the aforementioned findings, other
SGLT-2i, such as luseogliflozin and tofogliflozin also revealed
promising results. Luseogliflozin improved hepatic steatosis and
collagen deposition, while tofogliflozin also improved hepatic
inflammation, NAS and liver fibrosis, without significant
differences in steatosis grade [67,68]. Interestingly, it has been
suggested that tofogliflozin may prevent the development of
NASH-associated hepatic tumors [68]; however, this requires
validation by other studies.

Combination therapies

Although treating NAFLD is an appealing topic for researchers
and the pharmaceutical industry, most medications failed to meet
their endpoints in clinical trials [69]. This may indicate that there is no
“magic bullet” to effectively treat all NAFLD patients, partly because
of the considerable heterogeneity of the disease’s pathogenesis.
Thus, it appears rational to target multiple pathogenic factors
simultaneously, which may prove to be more fruitful approach to
management [17,70,71]. Several researchers have investigated the
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potential benefits of combining an SGLT-2i with other medications
(Table 2). Regarding dapagliflozin, the combination with metformin,
a first-line antidiabetic medication, provided the greatest histological
benefits in rats on an atherogenic diet [72].

Regarding canagliflozin, its monotherapy lowered hepatic
triglyceride content, but no further decrease was observed in
the group on a combination of canagliflozin and teneligliptin,
a dipeptidyl peptidase-4 (DPP-4) inhibitor, in mice on an
HED [73]. In another study, the combination of canagliflozin
and teneligliptin did not show additional histological
improvement compared to canagliflozin monotherapy in Fisher
rats on a choline deficient L-amino acid-defined diet; however,
the collagen content, as an index of fibrosis, was decreased in
the combination group compared to either canagliflozin or
teneligliptin monotherapy [74].

Regarding empagliflozin, its combination with linagliptin,
another DPP-4 inhibitor, reduced hepatic lipid content
compared to monotherapy with empagliflozin in db/db
mice [75]. The combination of empagliflozin with metformin
in mice with CCIl -induced hepatic fibrosis reduced
necroinflammation compared to CCI, mice on no treatment
(active control group), and resulted in a smaller fibrosis
area compared to monotherapy with either metformin or
empagliflozin [76]. As mentioned above, the combination of
empagliflozin with ezetimibe (a hypolipidemic medication)
reduced steatosis, but not inflammation or fibrosis, compared
to a control group in choline-deficient mice on HFD, whereas
monotherapy with either drug was not effective [61].

Regarding ipragliflozin, its combination with pioglitazone,
a peroxisome proliferator-activated receptor-y agonist, resulted
in a bigger decrease in steatosis, inflammation and fibrosis
compared to control and monotherapy with ipragliflozin
in diabetic mice with NASH [65]. When ipragliflozin was
combined with liraglutide, a glucagon-like peptide-1 receptor
agonist, in two mouse models, the combination reduced
NAS compared to controls (Table 2), but did not provide
extra histological benefits compared to monotherapy with
either ipragliflozin or pioglitazone [77]. The combination
of ipragliflozin with metformin reduced hepatic steatosis,
inflammation and fibrosis compared to a control group and
metformin monotherapy in diabetic mice with NASH [78].

Regarding tofogliflozin, its combination with pemafibrate
decreased hepatocellular ballooning, but not steatosis or
fibrosis, compared to the control group, but showed no
additional histological benefit compared to monotherapy with
tofogliflozin in streptozotocin mice on HFD [79].

Discussion

NAFLD is a global public health problem with increasing
prevalence, making the need for pharmacological therapy
imperative. Since T2DM is considered a major contributor
to the pathophysiology of NAFLD, antidiabetic medications
hold promise for the management of NAFLD. SGLT-2i have
been approved for T2DM treatment and their mechanisms of
action render them potentially therapeutic agents for NAFLD.
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Preclinical studies have demonstrated promising results regarding
specific histological features of NAFLD, such as hepatic steatosis
and inflammation, whereas there is less and more conflicting
evidence for liver fibrosis (Table 1)—though this is considered a
histological predictor of advanced disease and a difficult target to
treat [70]. Moreover, the metabolic effects of SGLT-2i influence
the pathophysiologic mechanisms that lead to NAFLD, including
but not limited to weight loss and glycemic control (Fig. 2).
SGLT-2i have also shown pleiotropic effects, thus leading to their
approval, apart from T2DM, for heart failure and chronic kidney
disease [80], diseases that are closely associated with NAFLD [81].
More specifically, SGLT-2i were shown to decrease cardiovascular
risk and the rate of chronic kidney disease, which are particularly
important for individuals with NAFLD, and even more important
when we consider that cardiovascular diseases are the first cause
of death among patients with NAFLD [82,83]. Regarding the
effects of SGLT-2i in a clinical setting, a recent meta-analysis of
16 randomized controlled trials evaluating the effectiveness of
SGLT-2i on hepatic steatosis and fibrosis in patients with NAFLD
showed favorable effects of SGLT-2i on imaging parameters of
hepatic steatosis (e.g., controlled attenuation parameter, liver-to-
spleen attenuation ratio and magnetic resonance imaging—proton
density fat fraction) [84]. On the other hand, SGLT-2i showed a
potentially limited effect on noninvasive indices of hepatic fibrosis,
whereas studies with paired liver biopsies are scarce [84]. These
effects resemble those observed in the relevant animal studies
(Table 1), generally showing a favorable effect of SGLT-2i on
hepatic steatosis, but a so far questionable effect on fibrosis. Taking
the above into consideration, more data on the effects of SGLT-
2i are required in patients with NAFLD from studies designed
with paired liver biopsies; in this regard, animal studies are highly
constructive, since they generate the hypotheses on which human
studies are based. However, an important limitation of different
animal studies is the heterogeneity in their design, including but
not limited to animal models, doses of medications, duration and
combinations of medications (Tables 1 and 2). This heterogeneity
may generate conflicting data that are sometimes difficult to
explain, and impedes the applicability of animal studies to clinical
studies [85].

Recently, resmetirom, an oral thyroid hormone receptor
beta-selective agonist, being selective for the liver, was
approved in the USA for patients with NASH and fibrosis
stage 2 or 3 [86]. However, a “one pill fits all” approach
for NAFLD patients is challenging and unlikely, given the
complex and multifactorial pathogenesis of the disease. In this
scenario, combination therapies targeting multiple pathogenic
contributors simultaneously appear to be a potentially
promising strategy [17]. Combination therapies may also have
additive or synergistic effects on the same target or may help
reduce the dose of another medication, thus diminishing the
possibility of the latter having adverse effects. Most importantly,
a personalized approach, targeting different pathogenic
contributors based on the individual situation, should be
considered [17]. Although data are currently limited on the
effects of combinations of SGLT-2 with other medications
(Table 2), this approach may be promising; for example, the
combination of resmetirom with SGLT-2i may be investigated,
possibly starting from animal models of diabetes and fibrotic
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NASH, and then moving on to patients with diabetes and
fibrotic NASH.

Regarding their adverse effects, SGLT-2i are well-tolerated
in patients with T2DM, with the main side-effects being urinary
and genital tract infections, which are generally mild and do not
lead to discontinuation; however, there are cases of the more
alarming euglycemic diabetic ketoacidosis, which seems to
occur rarely, but needs vigilance on the part of physicians [87].

In conclusion, the current findings indicate that SGLT-2i
may be beneficial for NAFLD through multiple mechanisms,
which may lie beyond their weight loss and glucose-regulating
properties. Given their pleiotropic effects, SGLT-2i, as
monotherapy or in combination with other medications, may
prove to be valuable allies in the management of NAFLD in
some selected individuals, thus providing hepatic benefits in
addition to antidiabetic, cardiovascular and renal benefits.
Of course, further research is needed in the field to better
elucidate the pharmacological mechanisms underlying the
observed benefits with regard to NAFLD. This may lead to a
more efficacious translation of the findings of animal studies
into tailored clinical studies in patients with NAFLD.
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