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Abstract Background Artificial intelligence (AI), when applied to computer vision using a convolutional 
neural network (CNN), is a promising tool in “difficult-to-diagnose” conditions such as malignant 
biliary strictures and cholangiocarcinoma (CCA). The aim of this systematic review is to 
summarize and review the available data on the diagnostic utility of endoscopic AI-based imaging 
for malignant biliary strictures and CCA.

Methods In this systematic review, PubMed, Scopus and Web of Science databases were reviewed 
for studies published from January 2000 to June 2022. Extracted data included type of endoscopic 
imaging modality, AI classifiers, and performance measures.

Results The search yielded 5 studies involving 1465  patients. Of the 5 included studies, 4 
(n=934; 3,775,819 images) used CNN in combination with cholangioscopy, while one study 
(n=531; 13,210 images) used CNN with endoscopic ultrasound (EUS). The average image 
processing speed of CNN with cholangioscopy was 7-15 msec per frame while that of CNN 
with EUS was 200-300 msec per frame. The highest performance metrics were observed with 
CNN-cholangioscopy (accuracy 94.9%, sensitivity 94.7%, and specificity 92.1%). CNN-EUS was 
associated with the greatest clinical performance application, providing station recognition and 
bile duct segmentation; thus reducing procedure length and providing real-time feedback to the 
endoscopist.

Conclusions Our results suggest that there is increasing evidence to support a role for AI in the 
diagnosis of malignant biliary strictures and CCA. CNN-based machine leaning of cholangioscopy 
images appears to be the most promising, while CNN-EUS has the best clinical performance 
application.
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Introduction

Cholangiocarcinoma (CCA) is a malignant bile duct cancer 
arising from epithelial cells of the intrahepatic, perihilar or 
distal bile ducts [1-5]. The etiology of CCA includes primary 
sclerosing cholangitis (PSC), hepatobiliary flukes, Caroli’s 
syndrome and congenital hepatic fibrosis [1,2,6]. CCA is highly 
lethal because most patients are diagnosed at an advanced 
stage   [5,7]. The incidence and mortality rate of CCA are 
increasing worldwide, and it accounts for approximately 20% of 
all hepatobiliary cancer-related deaths [3,4,7]. The only effective 
cure for CCA is the surgical resection of localized lesions. 
However, the prognosis of CCA remains extremely poor, with 
5-year survival rates after surgery rarely exceeding 35% [6,8].
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The diagnosis of malignant biliary strictures and CCA 
is challenging. When a patient with a biliary stricture is 
approached, endoscopic retrograde cholangiopancreatography 
(ERCP) is usually used initially. ERCP-based diagnosis of biliary 
stricture through use of either brush cytology or intraductal 
biopsies is limited by their poor sensitivity (43% and 48%, 
respectively) [9]. Hence a significant proportion of strictures 
remain indeterminate, which has led to the development of 
cholangioscopy-based techniques.

Cholangioscopy provides endoscopic direct visualization of 
the biliary system and the possibility of targeted biopsies under 
direct vision. In a meta-analysis of 21 studies, single-operator 
cholangioscopy with targeted biopsies was the most accurate 
diagnostic imaging modality for cholangiocarcinoma in patients 
with PSC-induced biliary strictures, despite having a modest 
sensitivity of 65% (95% confidence interval [CI] 35-87%) [1]. 
A  recent multicenter trial demonstrated that cholangioscopy 
improved the sensitivity of visual identification of malignant 
biliary strictures from 65-95%, with a concomitant specificity of 
visual impression of 89% [10]. However, more than 25% of patients 
presumed to have malignant strictures during cholangioscopy 
show benign pathology after major surgical intervention [11]. 
Interpretation of the visual findings during cholangioscopy 
remains challenging, even for experienced endoscopists [12].

Endoscopic ultrasound (EUS) has become a valuable tool 
in the evaluation of the pancreaticobiliary system. Multiple 
studies have reported on the use of EUS-fine needle aspiration 
(FNA) for the diagnosis of malignant extrahepatic biliary 
strictures and CCA (i.e., distal bile duct due to accessibility). 
In a meta-analysis of 6 studies, the overall pooled sensitivity 
of EUS-FNA for the diagnosis of CCA was 66% (95%CI 57-
74%) [13]. Although EUS-FNA is useful in CCA detection, 
there have also been concerns over the risk of tumor seeding or 
needle track seeding [14]. Therefore, endoscopic visualization 
via EUS without FNA may be a safer approach to the diagnosis 
of CCA. The lack of a sensitive and specific early diagnostic 
marker, coupled with the scarcity of alternative curative 
treatments to surgical resection, produces a dismal prognosis 
in patients with malignant biliary strictures and CCA, who 
have an estimated life expectancy of 6-12 months.

Artificial intelligence (AI) is a branch of computer 
science that uses computational methods to simulate human 
intelligence [15]. AI based on deep learning (DL), a type of 
machine learning that enables end-to-end learning of very 
complex functions from raw data, has triggered tremendous 
global interest in recent years. The convolutional neural network 
(CNN) is a type of DL algorithm that hardcodes translational 
invariance, a key feature of image data. DL with CNN has been 

widely adopted in image recognition, and the use of AI has 
been increasing gradually in medical diagnosis and prognosis 
[16,17]. Currently, large amounts of imaging data, coupled 
with data on clinical outcomes, have led to the emergence of 
AI within endoscopy as a new field of hepatobiliary research 
[12]. AI methods in medical imaging include the traditional 
flowchart of radiomics analysis and DL algorithms (Fig.  1) 
[7]. The traditional flowchart includes segmentation of regions 
of interest (ROI), feature extraction, feature selection and 
modeling. It relies on radiomics features extracted from the ROI 
and conventional machine learning algorithms. DL algorithms 
also fall under radiomics, but do not require region annotation. 
The process includes some hidden layers, where extraction 
of radiomics features, selection and ultimate modeling are 
performed simultaneously during training [7,16,17].

In recent studies, the impact of AI tools on the evaluation 
of endoscopic bile duct images has recently been assessed to 
develop and validate CNN-based algorithms for the automatic 
detection and differentiation of malignant biliary strictures 
and CCA [18-22]. To the best of our knowledge, the literature 
lacks a systematic review and meta-analysis of the available 
evidence that has examined the diagnostic performance of 
endoscopic AI-based imaging in the diagnosis of malignant 
bile duct strictures and CCA. The aim of this systematic review 
is to summarize and review the available data on the diagnostic 
utility of endoscopic AI-based imaging for malignant biliary 
strictures and CCA. We also aim to propose future challenges 
and directions for endoscopic AI-based imaging in the 
diagnosis of malignant biliary strictures and  CCA.

Materials and methods

Literature search

A systematic literature review was performed according to 
the Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) guidelines [23]. We searched PubMed, 
Scopus and Web of Science databases to identify all potentially 
relevant studies published from January 2000 to June 2022. 
Additional published proceedings were also abstracted from 
major hepatology and gastrointestinal meetings up to June 2022. 
Scientific meetings included Digestive Disease Week and United 
European Gastroenterology Week, along with other sponsored 
meetings by the American College of Gastroenterology, the 
American Association for the Study of Liver Diseases, and the 
European Association for the Study of the Liver. All relevant 
articles were included, irrespectively of language, year of 
publication, type of publication or publication status. The search 
queries were carefully built with the guidance of a professional 
librarian, using search terms related to endoscopic AI-based 
imaging and malignant biliary strictures or CCA. The specific 
search string was as follows: ((Malignant biliary strictures OR 
Cholangiocarcinoma OR CCA OR Bile duct cancer OR Cancer 
of biliary duct OR carcinoma of bile duct) AND (Medical imag 
*Endoscopic imag OR Ultrasound OR cholangioscopy) AND 
(Computer aided OR Artificial intelligence OR Deep learning 
OR Machine learning) AND (Image preprocessing OR Segment 
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*OR Feature ex-  traction OR Feature selection OR Region of 
interest OR Classification OR Recogni *OR Detect *OR Predict 
*) AND (Performance OR Accuracy OR Precision OR Recall OR 
F-score OR Metric *)). Two reviewers independently screened 
the titles and abstracts of all the articles according to predefined 
inclusion and exclusion criteria. Any differences were resolved by 
mutual agreement and in consultation with the third reviewer. 
We searched for additional references by cross-checking the 
bibliographies of retrieved full-text papers. All biomedical 
studies that evaluated endoscopic AI-based imaging models 
assisting in malignant biliary strictures or CCA diagnosis were 
included. Duplicates were discarded using the EndNote reference 
management software. Following the elimination of duplicates, a 
careful screening of titles and abstracts was performed to identify 
papers relevant to our research topic. We extracted the following 
data from each study: 1)  application; 2) name of first author; 3) 
year of publication; 4) clinical aim; 5) pathology; 6) type of data; 
7) data; 8) AI classifier; 9) benchmark measure; and 10) results.

Selection criteria

Only studies involving endoscopic AI-based imaging in 
the identification of malignant biliary strictures or CCA, with 
availability of data for the construction of 2×2 contingency tables, 
were included. The numbers of true positives, true negatives, false 
positives, and false negatives were retrieved. We removed studies 
with insufficient data and those with a sample size of <10. We 
determined the utility of visual EUS and cholangioscopic AI-
based findings in the detection of malignant bile duct strictures 
and CCA. AI-based performance benchmarks of interest 
included: accuracy, sensitivity, specificity/recall, area under curve, 
precision, Dice, intersection over union, and F-1 score (Table 1).

Index test

The index test in our analysis was the use of any endoscopic 
AI-based imaging modality with studies reporting evidence of 
malignant biliary strictures or CCA.

Assessment of methodological quality

Quality assessment of diagnostic accuracy studies 
(QUADAS-2) was used to assess quality in this study [24]. 

QUADAS-2 is an evidence-based tool for assessment of 
quality in systematic reviews of diagnostic accuracy studies. 
It is structured so that 4 key domains are rated for risk of 
bias, and concerns regarding applicability to the research 
question were used to evaluate the studies. Each key domain 
has a set of signaling questions to assess bias and applicability. 
Disagreement among raters was resolved by consensus with 
the other authors. We used tabular and graphical displays in 
Review Manager 5 (RevMan 5.4) to summarize the QUADAS-2 
assessments.

Results

Characteristics of included studies

An initial literature search generated 131 articles. We 
screened 93 articles after duplicates were removed. The titles 
of these were reviewed in accordance with the predefined 
inclusion criteria, yielding 18 potentially relevant articles 
reviewed in depth. Among these, 5 studies (n=1465) that met 
the inclusion criteria were included in the systematic review 
and meta-analysis [18-22]. A PRISMA flow chart of the search 
results is shown in Fig. 2.

Of the 5 included studies, 4 (n=934; 3,775,819 images) 
used CNN in combination with cholangioscopy, while 1 study 
(n=531; 13,210 images) used CNN with EUS. The average 
image processing speed of CNN with cholangioscopy was 7-15 
msec per frame, while that of CNN with EUS was 200-300 
msec per frame. The characteristics of the included studies and 
their performance metrics are shown in Table 2.

Quality assessment of included studies

The quality of the eligible studies was assessed by 
QUADAS-2 criteria and is reported in Fig.  3. There was a 
low risk of bias regarding the selection of patients, index test 
and reference standards; however, the 4 studies involving 
cholangioscopy did not clearly account for risk of bias in the 
flow and timing of the study. There were patient selection 
applicability concerns in the study by Reibero et al and index 
test applicability concerns in the study by Yao et al, notably due 
to variable index definitions  [20,21].

Input

Input Deep learning

Traditional Machine learning

Preprocessing Segmentation ClassificationFeature extraction
and selection

Diagnostic
opinions

Diagnostic
opinions

Figure 1 Traditional flow chart and deep learning algorithms



226 B. Njei et al

Annals of Gastroenterology 36 

Table 1 Artificial intelligence performance evaluator metrics

Benchmark measure Definition

TP Patients with a type of malignant biliary stricture of cholangiocarcinoma diagnosed with the same type

False positives Normal persons or patients with other liver diseases diagnosed with malignant biliary stricture of cholangiocarcinoma

False negatives Patients with malignant biliary stricture or cholangiocarcinoma diagnosed as normal

TN Normal persons who are corrected diagnosed as normal

Accuracy Proportion of the number of correctly classified samples in all samples

Area under curve Area under the receiver operating characteristic curve, where each point reflects the receptivity to the same signal stimulus

Sensitivity/Recall Proportion of all TP correctly classified and measure the extent to which the classifier can recognize TP

Specificity Correct proportion of all TN to be classified and measures the extent to which the classifier can recognize TN

Precision Proportion of the number of correctly classified positive samples in all classified positive samples

Dice Used to calculate the similarity of 2 samples. When applied to segmentation, the 2 sets of samples are predicted 
bounding box and ground truth bounding box. The range of its value is from 0-1, with the best value of 
segmentation result being 1, and the worst 0

F-1 Score Measures the accuracy of the binary classification model, considering the accuracy and recall of the classification 
model. It can be regarded as a weight average of the accuracy and recall

Intersection over union Measures the accuracy of detecting corresponding objects in a specific dataset. For segmentation, it is defined as the 
relative area of overlap between the predicted bounding box and the ground-truth bounding box

Positive predictive value The proportion of the cases giving positive test results who have the disease

Negative predictive value The proportion of the cases giving negative test results who are healthy

Positive LR Probability that a person with the disease tested positive/probability that a person without the disease tested positive

Negative LR Probability that a person with the disease tested negative/probability that a person without the disease tested negative
TP, true positives; TN, true negatives; LR, likelihood ratio

Identification of studies via databases

Records identified through
database searching
(n = 131)

Records after duplicates
removed
(n = 93)

Records screened
(n = 93)

Full-text articles assessed
for eligibility
(n = 18)

Studies included in Systematic
Review
(n = 5)

Records excluded
(n = 75)

Full text excluded, with reason:
Did not apply artificial intelligence (n = 9)
No patient data used (n=4)
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Figure 2 PRISMA flow diagram for studies identified for the systematic review
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Clinical utility

A Fagan plot was employed to determine the meaningfulness 
or clinical utility [25]. The Fagan nomogram is a graphical 
tool for estimating how much the result of a diagnostic test 
changes the probability that a patient has a disease. The Fagan 
nomogram for diagnosis of malignant biliary strictures/CCA 
using CNN in endoscopic imaging is shown in Fig.  4. With 
a pretest probability (20%) of malignant biliary stricture or 
CCA, if a patient tests positive, the post-test probability that 
the patient truly has malignant biliary stricture/CCA would be 
approximately 69%. Alternatively, if the patient tests negative, 
the post-test probability that the patient has malignant biliary 
stricture or CCA would be approximately 3%.

Application of clinical performance

Among the studies included in this systematic review and meta-
analysis, CNN with EUS imaging had the best clinical performance 
application, while CNN with cholangioscopy for diagnosis of 
malignant biliary stricture/CCA needs to be further verified. 
The EUS bile duct scanning segmentation system significantly 
improved the accuracy of endoscopic station recognition and 
bile duct segmentation and may shorten the learning time for 
the diagnosis of CCA [21]. In addition, it could ensure stable and 
smooth operation on a private computer, completely affordable 
to practicing gastroenterologists in private practice. Above all, the 
system could run automatically, which would provide real-time 

guidance for endoscopists and reduce unnecessary work. Therefore, 
this proposed system was of great clinical impact. However, 
compared to EUS, cholangioscopy with CNN had a faster image 
processing speed (200 msec vs. 7 sec per frame) and therefore may 
be associated with a shorter overall procedure time [19,21].

Discussion

Diagnosing malignant biliary strictures and CCA remains 
challenging despite the availability of several endoscopic modalities. 
Currently, there are no clear international guidelines on the optimal 
diagnostic modality for malignant biliary strictures or CCA. Cytologic 
or tissue diagnosis, obtained during ERCP by brushing, biopsies or 
both, is limited by their poor sensitivity [9]. Cholangioscopy and 
EUS provide direct visualization of strictures and allow for targeted 
biopsies and FNA, respectively, which may help diagnose or rule 
out malignancy in indeterminate strictures. In previous systematic 
reviews and meta-analyses, we demonstrated that the pooled 
sensitivity and specificity of EUS-FNA to detect CCA as the etiology 
of biliary strictures were 66% and 100%, respectively, while the 
pooled sensitivity and specificity for diagnosis of cholangioscopy-
guided biopsies in the diagnosis of CCA were 66.2% and 97.0%, 
respectively [1,13]. In the current systematic review, the highest 
performance metrics were observed with CNN-cholangioscopy 
(accuracy 94.9, sensitivity 94.7%, and specificity 92.1%). Thus, the 
introduction of AI algorithms such as CNN-cholangioscopy may 
significantly enhance the diagnostic armamentarium in patients with 
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Flow and Timing
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Applicability Concerns
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Figure 3 QUADAS-2 quality assessment of included studies. Risk of bias and applicability concerns graph: review authors’ judgements about each 
domain presented as percentages across included studies
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suspected malignant biliary strictures or CCA. In addition, given the 
high accuracy of AI-based endoscopic imaging for the diagnosis of 
malignant biliary strictures/CCA, patients with highly suspicious 
lesions by EUS or cholangioscopic images suitable for surgery may 
be able to proceed to surgical resection even if tissue biopsy results 
are negative for malignancy.

One of the major potential benefits of using AI-based 
endoscopic imaging for the diagnosis of malignant biliary 
strictures/CCA, without further tissue sampling such as biopsies or 
FNA, is that AI-based endoscopic imaging alone, without further 
invasive testing, is likely to result in fewer procedure-associated 
adverse events. For example, Kalaitzakis et al reported post-
procedural cholangitis in 11% of patients after cholangioscopy 
with targeted biopsies, and there have also been concerns over 
the risk of tumor seeding or needle track seeding with EUS-FNA 
[26]. In a study from the Mayo Clinic, of 191 patients with locally 
unresectable hilar CCA, the incidence of peritoneal metastasis 
was 8% in those who did not undergo biopsy, compared with 
83% in those with a diagnostic transperitoneal FNA (P=0.009) 
[14]. According to this report, the Mayo Clinic transplantation 
protocol excludes patients who have undergone biopsy of the 

primary tumor for neoadjuvant therapy and liver transplantation. 
The concern is that the EUS needle traverses the peritoneum 
and omental fat that will not be resected at the time of liver 
transplantation. Nevertheless, it is important to clarify that the 
role of AI is to assist with tissue diagnosis and improve targeted 
biopsies. At this time, tissue diagnosis is required to confirm the 
diagnosis of cholangiocarcinoma.

Although the potential of AI imaging in CCA diagnosis is 
promising, to observe practical benefits in real-world systems, 
it is critical to delineate some challenges. Notably, there is a 
clinically significant improvement in sensitivity when CNN 
algorithms are used with endoscopic imaging, with a minimal 
drop in its specificity. Data quality, data inconsistency and 
instability, and limitations of large size and diversity in 
support of new studies are some of the major concerns. DL 
algorithms require large datasets for validation, not readily 
available. Furthermore, the risk of overfitting should not be 
ignored. Overfitting is a risk in the development of AI systems 
that undermines the applicability of an algorithm in real-life 
settings. The inclusion of a large pool of frames extracted from 
full-length videos (with distinct resolution and viewing angles) 
has contributed to the mitigation of the possibility of overfitting 
[16,27]. In this systematic review, CNN with EUS imaging had 
better clinical performance application compared to DL using 
CNN with cholangioscopy, although comparative and externally 
validated studies are needed. Furthermore, the EUS literature is 
limited, with very few studies available at this time. The research 
community will need to create and populate public repositories 
to make resources publicly available for external validation of 
published AI imaging algorithms. More studies are needed on 
the clinical applicability of AI-based endoscopic imaging in 
the diagnosis of malignant biliary strictures/CCA. While AI 
may produce powerful predictions, this abstraction can lead to 
hesitation in deploying them. Moreover, the problem of liability 
emerges if AI is entrusted with medical activities. To close 
the gap between clinical practice and AI, future research may 
concentrate, not only on the technological aspects of the design 
of AI for clinical applications, but also on the development of 
ethical and legal systems for the implementation, validation 
and control of AI in clinical care. AI methods should operate 
in parallel with and under the supervision of clinicians until 
their accuracy and margin of error are considered appropriate 
and reasonable, respectively. It is important that researchers 
not focus only on the performance of algorithms, but rather on 
increasing their trustworthiness. There is a need for more studies 
to show that AI algorithms will help save diagnosis time. Such 
an AI system will need to be connected to doctor workstations 
and should be easy to use. Finally, clinical trials to show that 
AI systems will improve clinical outcomes such as mortality, as 
well as cost-effectiveness analyses of the implementation of AI-
based endoscopic imaging for the diagnosis of malignant biliary 
strictures/CCA in routine clinical practice are paramount.

In summary, although no current screening strategies are 
recommended, in part because of the difficulty in distinguishing 
CCA from chronic inflammation in dominant benign 
strictures, the present life expectancy associated with CCA is 
unacceptable and necessitates a streamlined, universally agreed 
upon diagnostic approach. Our results suggest that there is 
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increasing evidence to support a role of AI in the diagnosis of 
malignant biliary strictures and CCA. CNN-based machine 
learning of cholangioscopy and EUS images appears to be the 
most promising application for the visual diagnosis of malignant 
biliary strictures and CCA, though it is important to acknowledge 
that only a limited amount of data exist at this time. As with 
any computer vision machine learning modality, addressing 
“overfitting” and bias are important. Comparative and externally 
validated studies to establish the role of AI systems in patient-
centered clinical outcomes are warranted. Furthermore, data 
describing the cost-effectiveness of using AI-based endoscopic 
imaging for the visual diagnosis of malignant biliary strictures, 
and CCA as a first-line diagnostic tool, are still needed before the 
approach can be widely accepted as a standard of care.

Summary Box

What is already known:

•	 Cholangiocarcinoma (CCA) remains challenging 
to diagnose despite the availability of a variety of 
endoscopic modalities

•	 Artificial intelligence (AI) may assist clinicians with 
the detection and differentiation of malignant biliary 
strictures and CCA

What the new finding is:

•	 Convolutional neural network-based machine 
learning in cholangioscopy and endoscopic 
ultrasound imaging appears to be a promising AI-
associated application for the diagnosis of malignant 
biliary strictures and CCA
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