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Understanding the microbiome: a primer on the role of the 
microbiome in colorectal neoplasia
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Abstract Colorectal cancer is a leading cause of cancer-related death internationally, with mounting evidence 
pointing to the role of the microbiome in adenoma and cancer development. This article aims to 
provide clinicians with a foundation for understanding the field of research into the microbiome. 
We also illustrate the various ways in which the microbiota have been linked to colorectal cancer, 
with a specific focus on microbiota with identified virulence factors, and also on the ways that 
byproducts of microbiota metabolism may result in oncogenesis. We also review strategies for 
manipulating the microbiome for therapeutic effects.
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Introduction

Colorectal cancer (CRC) is a leading cause of cancer-
related death worldwide [1]. Diet and bad habits, such as 
high consumption of alcohol and cigarette smoking, have 
been accepted as associative factors that place individuals at 
increased risk for the development of disease. However, the 
precise changes that occur as a result of these factors have not 
been clearly identified. Other malignancies have been linked 
to infectious etiologies, as in the case of human papillomavirus 
infection and cervical cancer [2], or Helicobacter pylori 
(H.  pylori) and gastric cancer [3-5]. With more than 1014 
bacteria residing in the colon [6], it is logical that we are 
now looking toward the microbiome as a potential driver of 
neoplastic transformation.

Defining the role of the microbiome

The human microbiome refers to the community of 
microorganisms sharing space within the human body; it 

consists of myriad bacteria, as well as fungi and viruses. 
Bacterial species greatly outnumber other constituents of the 
microbiome. The words “microbiome” and “microbiota” are 
often used interchangeably. However, the term “microbiome” 
encompasses the entire environment (microorganisms, 
genomes and microenvironment), while the term “microbiota” 
refers specifically to the microbes themselves. There are over 
3.8 × 1013 bacterial cells in the human body (compared to 3.0 
× 1013 human cells), with the majority residing in the colon 
(1011/mL bacteria) [6]. This constitutes a colonic microbiome of 
3 million genes, approximately 100 times the number of genes 
encoded in the human genome [6,7]. Through the National 
Institutes of Health (NIH) Human Microbiome Project (HMP), 
our knowledge of the microbiome in times of health and 
disease has grown rapidly [8,9]. There are 3 dominant bacterial 
phyla within the human colon, Firmicutes, Bacteroidetes 
and Actinobacteria [10], and the distribution of microbiota 
varies along the gastrointestinal tract. Firmicutes are generally 
gram-positive cocci and form endospores. Familiar examples 
include Streptococcus spp., Enterococcus spp., Lactobacillus spp. 
and Bacillus spp. Bacteroidetes are gram-negative bacilli and 
are best known for the obligate anaerobic genus Bacteroides. 
Actinobacteria are gram-positive organisms that include 
Streptomyces spp. and Bifidobacterium spp. Through the study 
of germ-free animals, researchers have demonstrated the 
importance of the commensal bacteria, with roles in immune 
development and metabolic functions [11-16]. The microbiota 
appear to have a symbiotic relationship with humans.

Each individual’s microbiome develops in infancy and 
persists over time, with some variation through the different 
stages of life [17-19]. When there are significant pathological 
shifts in the microbiota, this is termed dysbiosis, and is 
associated with multiple disease states. For instance, dysbiosis 
has been associated with premature birth, type II diabetes and 
metabolic disease [8,20]. Additionally, the Inflammatory Bowel 
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Disease Multi’omics Database (IBDMDB) has demonstrated 
that patients with Crohn’s disease have different microbial 
communities with different transcriptional and metabolic 
profiles than normal individuals, and that these populations 
may change cyclically with relation to disease flares, findings 
which have been supported by multiple groups [7,21,22].

Research foundations

Understanding the role of the microbiome requires that we 
broaden our lens when assessing human health. Incorporating 
the microbiome in this way, we need to look at the 
interconnected relationships of the human gut ecosystem. To 
study this complex system, research has become increasingly 
collaborative. Terminology and study methods from the field of 
ecology, adapt at studying communities and their connections, 
are being applied to human health. Additionally, computational 
biostatisticians adept at managing large data sets are working 
with clinicians to understand these populations and their 
impacts on health and disease. Certainly, the HMP has brought 
many experts in the field together to help coordinate efforts 
and develop new techniques [8].

Analysis of the microbiome may be performed by 16S 
ribosomal RNA (rRNA) amplification sequencing or via 
whole-genome shotgun (WGS) sequencing. 16S rRNA 
sequencing is most common, and takes advantage of the 
fact that bacterial species have highly conserved sequences 
flanking phylogenetically informative hypervariable regions 
that allow for the construction of nearly universal primer sets. 
This allows for a cost-effective mechanism for identification 
and quantification of the microbiome. WGS, however, allows 
for higher definition of the microbiota, though with less 
information on the taxonomic profile of communities and at a 
higher cost. Traditional methods, such as quantitative real time 
polymerase chain reaction (qPCR), have fallen out of favor 
given the new sequencing methodologies, as qPCR is unable to 
assess the full microbial diversity.

Understanding the research does require clinicians to re-
familiarize themselves with taxonomic classification, as findings 
may be reported at any rank based on the details obtained in the 
sequencing and data processing (Table 1). Data reporting may 

occur at any taxa, which may be challenging to conceptualize 
if one is not familiar with microbiology. Microbiota may be 
reported as clades, or groups of microbes clustered based 
on a common ancestor. Frequently, findings are reported in 
operational taxonomic units (OTUs). An OTU refers to a group 
of genetically similar microbes, using this similarity to suggest 
a close relationship, and it is used in many current publications. 
However, the field is currently undergoing a transition toward 
the use of amplicon sequence variants or sub-OTUs, which 
use individual DNA sequences from high-throughput marker 
gene analysis and have the ability to account for sequence-
based error. The use of these newer methods allows for more 
granular sequence resolution, though some experts remain 
concerned that reliance on this level of detail may complicate 
the understanding of larger trends.

Currently, most data focus on the microbial populations at one 
given time, though some have proposed that relative changes over 
time are more indicative of disease. Questions regarding the most 
important metrics are still being debated. Is it more important 
to measure the absolute microbial populations or the relative 
population frequencies? Alternatively, are the specific microbiota 
more critical in driving human health, or is population diversity 
more important? Multiple groups have attempted to evaluate 
changes in bacterial networks as the drivers of disease  [23,24]. 
These techniques remain controversial, though there are several 
techniques for evaluation of interconnected communities, 
with the enterotype model being the most prevalent [25,26]. 
Enterotypes refer to distinct symbiotic groupings of microbiota in 
the intestinal ecosystem. Currently there are data to suggest that, 
in the right context, changes in specific bacterial populations, 
changes in overall diversity and changes in networks all may 
contribute to diseased states.

While a thorough review of the statistical methods used 
to analyze the microbiome would be outside the scope of 
this review, it is important for the clinician to understand 
that the field of analytics used to assess this interrelated field 
continues to develop. Studies frequently measure alpha-
diversity, or the diversity within a given environment, versus 
beta diversity, which is a comparison between the species from 
different environments. Alpha diversity is often assessed using 
the Shannon Index. Often data are found to lack a normal 
distribution, requiring nonparametric statistical methods such 
as the Wilcoxon rank sum or Kruskal-Wallis tests. Additionally, 

Table 1 Bacterial scientific classification by rank, with examples of commonly referenced bacterial species. Note that there are frequent deviations 
from the standardized suffix assigned to each rank

Rank Suffix E. coli B. fragilis L. casei

Phylum -bacteria* Proteobacteria Bacteroidetes Firmicutes

Class -ia Gamma proteobacteria Bacteroidia Bacilli

Other -ales Enterobacteriales Bacterodiales Lactobacillales

Family -aceae Enterobacteriaceae Bacteroidaceae Lactobacillaceae

Genus -ae Escherichia Bacteroides Lactobacillus

Species E. coli B. fragilis L. casei
*Phylum lacks a standardized code for the suffix, though names most commonly end in “-bacteria”
E. coli, Escherichia coli; B. fragilis, Bacteroides fragilis; L. casei, Lactobacillus casei



Understanding the microbiome 225

Annals of Gastroenterology 33

given the complexities of the data sets, multidimensional 
analyses are the foundation. There are different techniques 
to assess differences between groups, but the most common 
tests are fundamentally similar to an analysis of variance 
(ANOVA) [27], including permutational multivariate ANOVA, 
and analysis of group similarities. Additionally, comparisons 
between host factors and differences in the microbiome 
diversity are often performed using Spearman or Kendall 
rank correlation, among others. However, more nuanced 
methods are also commonly utilized, which generally require 
partnerships with individuals who have specialized training.

Finally, it is worth noting that the majority of studies rely 
on data from fecal samples, as these are more easily obtained 
and less invasive than biopsy specimens. There are some data to 
demonstrate that the fecal microbiome may be different than the 
mucosal microbiome [28-30]. This may be especially relevant 
when we attempt to understand the changes occurring at the 
mucosal level early on in the transition toward malignancy. The 
tumor microenvironment has been shown to be unique [31], 
and so it may prove that the global dysbiosis does not fully 
characterize the local impacts of certain microbiota.

Pathological impacts of the microbiota

A growing body of literature now points toward the 
association between the microbiota and the formation of 
adenomatous polyps (AP) and CRC. Studies have repeatedly 
demonstrated that alterations in overall microbial diversity are 
associated with diseased states across the gastrointestinal tract, 
including esophageal, gastric and colorectal neoplasms [32-37]. 
However, we have learned from the case of gastric cancer and 
H. pylori that the neoplastic driver may be more specific to 
an organism than just a state of general dysbiosis. Therefore, 
we have suspected that there is a specific genus or species 
associated with CRC and we are working to define the 
interactions between these microbes and the human host. 
Multiple microbial species have been consistently associated 
with CRC, though it is difficult to establish if the microbiota 
is driving tumorigenic changes in colonic cells, or if the pre-
malignant changes are driving the microenvironment and 
microbiota residing there. Saus et al refer to bacterial “drivers”—
those which may trigger epithelial cell DNA damage—and 
“passengers”—those which gain a competitive advantage in 
the altered microenvironment [38]. As most of the research to 
date does not demonstrate the changes over time, it may be 
difficult to ascertain which bacteria are “drivers” and which 
are “passengers,” but the observed differences in populations 
associated with AP and CRC are likely to be a mix of both.

Microbiota and human disease

Human and animal studies using both fecal and tissue samples 
have demonstrated some consistent trends in the microbiota in 
relation to the development of colonic adenomas or neoplasms. 

The data have been reported at various taxa; however, there are 
overarching similarities in the findings. Fig. 1 shows the bacteria 
commonly associated with CRC and with adenoma formation, 
while maintaining the phylogenetic relationships of the 
microbes to each other. Microbiota commonly associated with 
CRC in human cohorts are primarily from 5 phyla. Additionally, 
there may be a unique profile of microbiota associated with 
adenomas [34,48,49], including the family Desulfovibrionaceae 
(Bilophila, Desulfovibrio)  [49] and variants within the phylum 
Bacteroides (B. dorei, B. massiliensis, B. fragilis) [35,48,49].

Some of the microbes identified as being associated with 
adenocarcinoma formation do have close relatives associated 
with states of health, as discussed later. This does demonstrate 
that some microbes have specific characteristics that may 
be unique in relation to their clades. For instance, both A. 
parvulum and A. odontolyticus are oral microbiota associated 
with biofilm formation, and have been associated with CRC, 
whereas Bifidobacterium of the same phylum (Actinobacteria) 
is associated with health. Unlike its relatives, Bifidobacterium 
is native to the gastrointestinal tract, and Bifidobacterium 
performs carbohydrate fermentation.

Alterations in the microbiome have also been associated 
with distinct CRC characteristics. For instance, changes in the 
microbiome may also be associated with tumor grade [45]. 
Differences have also been identified in relation to different 
consensus molecular subtypes (CMSs), as originally defined 
by Guinney [50]. Using this framework, it would be most 
logical for CMS1 tumors to be associated with derangements 
in the microbiome, as they are most associated with immune 
activation. CMS1 tumors also have microsatellite instability 
(MSI), a high incidence of BRAF mutations, and are CpG island 
methylator phenotype (CIMP)-positive. Indeed, Purcell et al 
found that the microbiota did vary by tumor subtype [50], with 
CMS1 tumors being associated with increased populations of 
Fusobacteria and Bacteroidetes, including Fusobacterium (F.) 
hwasookii and Prophyromonas gingivalis [40]. Interestingly, 
both CMS1 tumors and the bacteria F. nucleatum are most 
commonly associated with the ascending colon [51,52]. 
Additionally, Koi et al have shown how F. nucleatum may 
contribute to the development of CIMP-positive and both 
MSI-H and MSI-L carcinogenesis [53]. Interestingly, Purcell 
et al also found CMS2 subtype tumors to have distinct 
microbial populations, with an increase in Selenomonas and 
Prevotella (also from the phylum Bacteroidetes). Burns et al 
demonstrated, using whole-exome sequencing, that specific 
communities were particularly associated with loss-of-function 
mutations in colonic tumors [44], including loss of function 
of the adenomatous polyposis coli (APC) gene, thus marrying 
changes in the microbiome with a CMS subtype, generally 
associated with a more traditional CRC pathway.

Virulence factors, inflammatory mediators and byproducts 
of metabolism

There are several specific bacteria that are consistently 
associated with CRC, and it is worth discussing these species 
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in detail, as research is currently focused on these specific 
microbes and their potential roles as therapeutic targets.

F. nucleatum is an oral anaerobe and is associated with 
biofilm formation [46,54,55], with some of the most consistent 
data associating its presence in the colon with CRC [56-59]. 
Multiple mechanisms by which F. nucleatum promotes and 
supports CRC have been delineated (Fig. 2A-D). The bacteria 
have been shown to selectively recruit tumor-infiltrating 
myeloid cells, promoting an inflammatory environment 
and tumorigenesis [57,59]. Its unique adhesin, FadA [60], 
is capable of binding E-cadherin and activating the Wnt/β-
catenin signaling pathway, resulting in cellular proliferation 
and tumorigenesis [61]. It has recently been demonstrated that 
FadA, E-cadherin and Annexin A1, upregulated in CRC cells, 
form a complex to further accelerate tumor progression [62]. 
This pathway is further capable of activating NF-κB, resulting 
in an increase of proinflammatory cytokines as well as the 
expression of several oncogenes, such as c-Myc and Cyclin 
D1 [55,61]. In addition, F. nucleatum presents the protein 
Fap2 on its cellular outer membrane. Fap2 interacts with the 
receptor TIGIT, an inhibitory NK cell and T-cell receptor, 
therefore blocking immune cell cytotoxicity [63]. This same 
protein is capable of binding tumor cells via the Gal-GalNac 
polysaccharide [64], localizing the bacteria to tumor cells.

Bacteroides fragilis is an obligate anaerobe that has been 
associated with the development of CRC in both murine and 
human models [35,42,65-70]. The enterotoxigenic molecular 
subtype (ETBF) is associated with mutagenesis secondary to 
the bft gene, which encodes the BFT toxin, resulting in cellular 
proliferation and an inflammatory environment in multiple 
ways (Fig. 3). BFT causes barrier permeability and E-cadherin 
cleavage, which in turn activates the Wnt/β-catenin signal 
pathway, resulting in cellular proliferation [71,72]. It also incites 
NF-κB activation, resulting in the release of proinflammatory 
chemokines and cytokines [70]. Wu et al demonstrated in 
multiple intestinal neoplasia mice (heterozygous for the APC 
gene) that BFT activates STAT3, resulting in a selective TH17 
response, inflammatory changes and development of CRC [69].

Escherichia coli (E. coli) is a gram-negative facultative 
anaerobe commensal to the gastrointestinal tract; however, the 
enteropathogenic E. coli (EPEC) strain has been associated with 
human neoplasia. EPEC is highly adherent to mucosal surfaces 
and has the ability to invade enterocytes [73,74]. In addition, 
EPEC can block mismatch repair (MMR) proteins MSH2 and 
MLH1 [75], linked with MSI. EPEC does this through secretion 
of the EspF protein, able to post-translationally deplete MMR 
proteins [76]. An increase in CRC has been demonstrated to 
occur by this pathway in cell lines  [75,76]. Additionally, an 
increased level of reactive oxygen species (ROS) in host cells 
was seen independent of EspF [76], increasing the risk of 
DNA damage. Strains of E. coli also carry a genomic island 
called “pks”, which produces a polyketide-peptide genotoxin, 
Colibactin, leading to DNA double strand breaks and 
promoting CRC [77,78].

Enterococcus (E.) faecalis is a gram-positive facultative 
anaerobe primarily implicated in colitis-associated 
development of CRC, largely through the production of 

superoxide and hydroxyl radicals [79,80]. Superoxide results 
in upregulation of macrophage cyclooxygenase-2 promoting 
chromosomal instability, double-stranded DNA breaks 
and tetraploidy by oxidative damage via the bystander 
effect [81-83]. The aldehyde produced by COX-2 of infected 
macrophages is capable of diffusion to neighboring cells, 
resulting in DNA damage within these cells. In addition, 
polarized macrophages have been shown to increase tumor 
necrosis factor (TNF)-α and netrin-1, regulators of colonic 
cellular apoptosis [84]. The presence of E. faecalis has also 
been shown to arrest cells in G2 [82].

Streptococcus (S.) gallolyticus (previously S. bovis) is a gram-
positive opportunistic bacterium first associated with CRC in 
the 1950s, when multiple patients with endocarditis were also 
found to have CRC [85]. It is best known for its ability to colonize 
collagen-rich surfaces, such as adenomatous tissue, by binding 
collagen (types I, IV and V) via the adhesin Acb [86]. While 
the exact mechanism has not been confirmed, it is believed 
that S. gallolyticus is able to penetrate beyond the epithelial 
barrier, inducing inflammation and tumorigenesis  [87,88]. 
S. gallolyticus has several pilus surface proteins thought to 
perform key functions during infection [89]. The bacterium’s 
cell-associated protein isolates result in the release of 
proinflammatory markers (interleukin [IL]-8, prostaglandin 
E2) and result in pre-neoplastic changes in the colonic mucosa 
of rats, as well as the formation of aberrant crypt foci [90,91]. In 
human studies, the pilus proteins are associated with elevated 
inflammatory responses, including elevation of IL-1, COX-2 
and IL-8, and these changes have been associated with colonic 
tumors [87,89]. In a case-controlled study, using antibodies 
to S. gallolyticus pilus proteins, Butt et al demonstrated an 
association between S. gallolyticus and an increased risk of 
CRC, consistent with the findings of others and suggests that S. 
gallolyticus plays a role in CRC [88,92].

Most of the bacteria reviewed have a specific virulence 
factor or protein identified, associated with the formation 
of pre-malignant or malignant lesions. The overarching 
mechanisms by which microbiota may induce neoplastic 
mutations within colonic enterocytes include direct actions of 
virulence factors, inflammatory mediators and the production 
of toxic or oncogenic byproducts (Fig. 4). More commonly, the 
effects of the microbiota in the colon are through metabolic 
byproducts and inflammatory mediation. Therefore, another 
way to evaluate the relationship of the microbiota and CRC 
is to evaluate the functional and metabolic roles they have 
in the colon and the interactions these products have with 
enterocytes. There are several byproducts of the colonic 
microbiota associated with negative impacts on the colon, 
many of which may be influenced by human diet.

Fat metabolism

The colonic microbiota are altered with exposure to a diet 
rich in animal fats [93], with an increased incidence of microbial 
communities capable of metabolizing bile acids. Bile acids are 
a good energy source for multiple types of microbiota, though 



228 K. M. Watson et al

Annals of Gastroenterology 33 

FadA

FadA

FadA

�-c
atenin

�-catenin

F. nucleatum

LPS Fap2

E-
ca

dh
er

in

E-ca
dh

eri
n

A1

Ann
ex

in

constitutive
activity

Myc-C

Cyclin D1

Wnt

Oncogenic gene
expression

NF-κB

Proinflammatory
cytokines

T cell

TIGIT

Fap2

Fap2

NK
Cell Inhibited from

attacking
tumor cells

Tumor
cells

Gal-GalNAc

LPS

TR
L4

MYD88

miRNA

Autophagy

ULK1 ATG7
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(B) FadA binds E-cadherin, resulting in Wnt/β-catenin signaling and tumorigenesis, as well as activation of NF-κB and production of 
proinflammatory cytokines. Annexin A1, upregulated in colorectal cells, complexes with FadA and E-cadherin to further accelerate 
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Created with BioRender.com
LPS, Lipopolysaccharide; Fap2, Fusobacterium autotransporter protein 2; TIGIT, T-cell immunoreceptor with Ig and ITIM domains; Ga-GalNac, 
D-galactose-β (1-3)-N-acetyl-D-galactosamine; TRL-4, Toll-like receptor 4

their hydrophobic nature may also result in cell membrane 
disruption for some microbial species, resulting in dynamic 
changes within the colonic lumen [94]. Intestinal microbiota 
metabolize primary bile acids that are not re-absorbed by the 
liver to secondary bile acids, most commonly deoxycholic acid 
and lithocholic acid [95], which have been demonstrated to 
result in an increased tumor burden in mice and DNA damage 
secondary to increased ROS and nitrogen species [96,97]. 
However, the ability of bile acids to behave as hormones and 
translocate to the nucleus can also have carcinogenic effects 
through alterations in signaling pathways [98-100]. Indeed, 
bile-tolerant microbiota have been associated with adenoma 
formation and CRC [41,49].

Protein metabolism

Bacterial protein metabolism results in a variety of 
byproducts, including branched chain fatty acids, N-nitroso 
compounds (NOCs), amines, ammonia, indoles, phenols, and 
hydrogen sulfide, many of which are harmful to colonocytes. 
Metabolomic studies demonstrate that the higher rates 
of CRC in individuals with increased protein intake are 
probably due to increased bacterial protein fermentation [41]. 
Increased dietary N-nitrosodimethylamine, a specific NOC, 
was demonstrated to lead to an increase in rectal cancer 
incidence in a large prospective cohort of 23,363 individuals 
in the UK [101]. However, intestinal microbiota are 
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C
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In this way, an increased intake of heme iron via red meat 
results in the generation of NOCs [103,104] and is thought 
to promote CRC, primarily through DNA alkylation resulting 
in genetic mutations [105,106]. Ammonia is another product 
of protein fermentation, and has been well demonstrated 
to be carcinogenic at concentrations seen in western 
diets [107-109]. Bacterial fermentation of aromatic amino 
acids from proteins also leads to the production of bioactive 
products, or phenolic compounds. The bacterial cohorts most 
notable for production of these products are Bacteroides spp 
and some Firmicutes [110]. Increased phenol concentrations 
have been shown to induce cellular damage and break down 
the intestinal epithelial barrier [111-113].

Hydrogen sulfide

Hydrogen sulfide is a final bacterial product of protein 
fermentation. Sulfate reducing bacteria most commonly 
include Desulfovibrio spp. and Bilophila (B.) wadsworthia [114]. 
B. wadsorthia is an anaerobic gram-negative bacterium that 
produces hydrogen sulfide via taurine desulfonation and 
has been associated with inflammatory bowel disease and 
CRC [115]. Sulfide has been shown to be toxic to colonocytes, 
inducing mucosal hyperproliferation [116] and inhibiting 
butyrate oxidation, resulting in a state of energy deprivation 
and the breakdown of the epithelial barrier [117,118]. It has 
also been shown to be directly genotoxic, probably through the 
action of ROS [119,120]. For these reasons, it is not surprising 
that patients with higher levels of hydrogen sulfide have been 
associated with CRC [121].

Short-chain fatty acids (SCFA)

The outcomes associated with SCFA metabolism are more 
complicated, particularly in the case of butyrate. SCFAs are the 
primary fermentation products of dietary fiber. They include 
acetate, propionate and butyrate, and are often associated 
with Clostridium clusters IV and XIVa from the Firmicutes 
phylum and Bifidobacteria from the Actinobacteria phylum. 
Butyrate in particular is an important energy source for colonic 
enterocytes  [122]. Overwhelmingly, data suggest that SCFA, 
including butyrate, are protective in relation to adenoma 
formation and CRC; however, there have been inconsistencies 
in these results. Belcheva et al demonstrated that low 
concentrations of butyrate resulted in hyperproliferation of 
colonic epithelial cells [123], though hyperproliferation is 
not seen at normal or increased levels of butyrate. Overall, 
SCFAs have been shown to decrease inflammation and 
carcinogenesis  [124] and have several functions that support 
a protective effect. There are multiple extracellular G protein-
coupled receptors on colonocytes, as well as immune cells, 
which interact with SCFAs [125,126]. The binding of butyrate 
with GPR109A in particular results in apoptosis of CRC cells 
via downregulation of Bcl-2, Bcl-xL and cyclin D1, as well as 
suppression of NF-κB [127]. However, the better described 
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Bacteroides fragilis; BFT, Bacteroides fragilis toxin; NOC, N-nitroso 
compounds; S. gallolyticus, Streptococcus gallolyticus; COX-1, 
cylcooyxgenase-1; IL, interleukin; PGE, prostaglandin E

responsible for endogenous production of NOCs, accounting 
for approximately 45-75% of total NOC exposure [102]. 
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effects of butyrate and SCFA are intracellular, through 
inhibition of histone deacetylases leading to hyperacetylation 
of histones and transcription factors and resulting in 
downregulation of proinflammatory cytokines through signal 
transduction pathways [128]. Additionally, through this same 
mechanism, butyrate and propionate have been shown to 
induce the differentiation of regulatory colonic T-cells (cTreg) 
and increase expression of the transcription factor FOXP3, 
downregulating inflammation [129,130]. Although there are 
studies showing that butyrate may have a negative impact in 
low doses, studies overall suggest that, at physiologic levels, 
butyrate is associated with protective microbiota species and 
metabolites, while butyrate levels are inversely correlated with 
CRC and polyps [34,45,131].

Phytochemicals

Another group of bacterial products, phytochemicals, 
are derived most commonly from the breakdown of plant 
substrates and are therefore mediated by diet [132,133]. 
Phytochemicals, including flavonoids and benzoic acids, are 
associated with anti-inflammatory effects [110]. Their anti-
inflammatory and anti-oxidative properties are probably 
secondary to downregulation of proinflammatory cytokines 

such as TNF and IL-6, and mediation of free radical effects and 
free radical scavenging [132,134,135].

A healthy microbial signature

Despite variation within the literature, there are specific 
microbiota that have been indicated as playing a protective 
role in regard to CRC development. The commonly cited 
microbiota are shown in Fig.  5 to allow for appreciation of 
similarities and relationships. The majority of studies have 
identified members of the Firmicutes phylum as associated 
with non-cancerous states.

The majority of these microbes are associated with 
butyrate production, and their repeated identification as 
protective microbes may be related to their metabolism 
as much as to the bacteria themselves. Identification of 
specific microbes and communities with anti-cancer 
effects is critical as we look to move toward therapeutic 
interventions. Understanding the protective microbiome 
may help guide modulation of the biome through supportive 
diet modification, probiotics and prebiotics. Given that the 
microbiome has been demonstrated to change in response 
to interventions, these relationships may lay the groundwork 
for future interventions.

Eubacteriaceae Lachnopiraceae

Eubacterium RoseburiaLactobacillus Lactococcus Faecalibacterium Clostridium

F. prausnitzii

Bifidobacterium

Lactobacillales Clostridiales

Lactobacillaceae Streptococcaeae Ruminococcaceae Clostridiaceae

Firmicutes

Bacilli Clostridia

Actinobacteria

Actinobacteria

Bifidobacteriales

Bifidobacteriaceae

No specific comments in literature 

Associated with health

Verrucomicrobia

Verrucomicrobiae

Verrucomicrobiales

Akkermansiaceae

Akkermansia

A. muciniphila

Figure 5 Microbiota associated with health. Microbiota associated with healthy individuals are often one of 3 phyla. Again, understanding the 
relationships between these microbiota helps to simplify the findings reported through the literature, as studies frequently use different taxonomic 
levels in reporting results. In this Figure, the microbiota associated with healthy individuals without cancerous or precancerous lesions are in green 
and those without specific comments in the literature but within the phylum are grey



Understanding the microbiome 231

Annals of Gastroenterology 33

Therapeutic directions

As we begin to appreciate the role of the microbiome 
in human health and disease, attention is shifting toward 
understanding ways that the microbiome can be altered 
to improve human health, including in relation to CRC. 
Currently, research is under way to evaluate ways in which the 
microbiome may help with disease diagnosis, prevention and 
therapy.

Detecting disease states

CRC is known to progress through the adenoma–
adenocarcinoma sequence over many years, allowing a 
reasonable period to identify and intervene upon pre-
malignant lesions prior to their progression to carcinoma. 
The US Preventative Services Task Force continues to 
recommend screening of individuals starting at age 50 (level 
A recommendation), though it does not specify the strategy 
for screening [139]. Colonoscopy remains the gold standard, 
though it does carry a small risk of harm, discomfort and 
inconvenience for patients. Stool-based tests, such as the 
guaiac-based fecal occult blood test and fecal immunochemical 
tests, lack sensitivity, especially if not used annually as directed. 
Therefore, the microbiome is being evaluated as a novel 
screening test for CRC.

Several authors have published on their models. Rezasoltani 
et al looked at 93 patients undergoing screening colonoscopy 
in Tehran, Iran, using qPCR to evaluate for F. nucleatum, 
E. faecalis, S. bovis (gallactolytica), ETBF, and Porphyromonas 
spp. [140]. Using a linear logistical analysis, they reported 
91.4% sensitivity and 93.5% specificity in distinguishing those 
with adenomatous polyps or CRC from normal individuals. 
Flemer et al, from Ireland, investigated the use of oral and fecal 
microbiota in their ability to detect AP and CRC versus normal 
individuals in a cohort of 234 patients undergoing screening 
colonoscopy [46]. The oral microbiota were assessed using oral 
swabs. They found that with oral swabs alone, their sensitivity 
was 53% (CRC) and 67% (AP), with a specificity of 93.5%. 
With the addition of the fecal microbiota, their sensitivity 
improved to 76% (CRC) and 88% (AP). In this model, the 
investigators found that Peptostreoptocococcus, Parvimona and 
Fusobacterium were positivity associated with lesions, while 
the presence of Lachnospiraceae was negatively correlated. 
Both these studies demonstrate that the microbiota may serve 
as a useful screening tool for CRC, and this possibility supports 
the idea that the microbiota is an important aspect of CRC.

The microbiome as therapy

Given the interactions between the microbiome and the 
colonic environment, we are starting to look to the microbiome 
as a therapeutic tool. There are multiple ways to target the 
microbiome, to either increase or decrease specific microbes, 
or communities as a whole. The most obvious means of 

altering an individual’s microbiota is through changes in diet, 
supplementation with probiotics, antibiotics and even fecal 
microbiota transplantation (FMT).

The western diet has been identified as a risk factor 
for CRC, and it has been shown to modify the intestinal 
microbiota. Multiple groups have illustrated how diet 
modification may be a potential target [93,141-144]. Diet 
alterations may shift the microbiome away from a collection 
of microbes that are tumorigenic secondary to virulence 
factors, immunomodulation or metabolic products. Red meat 
consumption has been indicated as being uniquely supportive 
of tumorigenic microbiota, whereas plant-based diets support 
butyrate-producers and intestinal health. Donohoe et al 
demonstrated that dietary supplementation with fiber was 
enough to suppress tumor growth in a mouse model, and that 
the effects of the dietary fiber supplementation were mediated 
through increased butyrate production [144]. Diet, therefore, 
is the first line in inducing healthy adaptations in the colon and 
reducing the development of CRC.

Diet modification can be challenging for patients and works 
through large shifts in communities. An alternative strategy is 
to use probiotics to replace the specific microbiota that have 
been implicated in reducing the risk of CRC, or that have been 
specifically indicated as having anti-tumor effects. Probiotics 
have been demonstrated to change the microbiota, though 
their effects may be more nuanced than often presumed [145]. 
Appleyard et al demonstrated that, in proinflammatory rats, 
the progression from inflammation to dysplasia was mediated 
with treatment of a probiotic (VSL#3, containing strains 
of Bifidobacterium, Lactobacillus, and S. salivarus) [146]. 
Lactobacillus spp., in particular, have been demonstrated to 
inhibit the development of CRC via several mechanisms, 
including through mediation of the c-Jun N-terminal 
kinase pathway [137,138]. Additionally, Lactobacillus and 
Bifidobacterium have been shown to aid in restoring a normal 
balance of intestinal flora [147,148].

While these techniques cultivate a healthy microbiome 
through protective inputs, it is also possible to eradicate 
carcinogenic species when identified in order to prevent the 
development of cancerous or pre-cancerous lesions. Perhaps 
the best-known success story of preventative interventions 
would be that of H. pylori and gastric cancer. H. pylori, 
presumably through an inflammatory process, results in the 
accumulation of mitotic errors over time [5]. By treating H. 
pylori infection, we are able to modify the microbiota of the 
foregut in order to prevent the progression to malignancy. 
Similarly, researchers have looked at the use of antimicrobial 
treatment for prevention of CRC. In mice, antibiotic treatment 
was found to decrease the prevalence of Clostridium leptum and 
CRC tumor burden [149]. In mice infected with Fusobacterium 
spp., treatment with metronidazole slowed tumor growth and 
reduced cellular proliferation [52]. Zackular et al colonized 
germ-free mice with tumorigenic microbiota, resulting in tumor 
formation. They were able to partially reverse these effects with 
antibiotic treatment, demonstrating that the microbiome was a 
modifiable driver of tumorigenesis [150]. The risk of treatment 
with antibiotics is inducing a state of dysbiosis; however, 
treatment with antibiotics and co-treatment with probiotics 
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may be a way to target high-risk microbiota while maintaining 
the global microbial balance.

Finally, FMT is another way to alter microbial communities. 
FMT has been successful in mouse models, though the transplant 
recipient is often germ-free at baseline. It has been validated as a 
tool for treatment of severe Clostridium difficile infections [151], 
and its use to restore dysbiotic microbiomes to normal is 
growing for treatment of other disorders [152,153]. However, 
enthusiasm was mildly tempered recently when a patient 
expired secondary to transfer of a drug-resistant bacterium. This 
unfortunate event prompted screening guidelines developed by 
the US Food and Drug Administration [154,155]. FMT remains 
a plausible treatment modality for management of dysbiosis, 
but will require further evaluation.

Modulation of existing therapies

There are therapies that target the microbiome directly, 
as well as others that use the microbiome as an adjunct to 
existing therapies. Lida et al used germ-free mice transplanted 
with lymphoma (EL4 cell line), colon carcinoma (MC38 
cell line) and melanoma (B16 cell line) to demonstrate the 
importance of the microbiome in response to platinum-driven 
chemotherapy, finding that an intact microbiome was required 
for myeloid-derived cells to produce ROS and to result in tumor 
reduction [156]. Sivan et al demonstrated that Bifidobacterium 
was synergistic with PD-1 and PD-L1 inhibitors in epithelial 
derived tumors, improving tumor response to treatment in 
those with higher populations of Bifidobacterium [157]; similar 
findings also apply to Akkermansia muciniphila [136,158]. The 
colonic microbiota are also different in men with prostate 
cancer on androgen receptor axis-targeted therapies (ATT), 
and there is speculation that these changes may translate to 
variable responses to ATT [159]. To date, there are 2 currently 
enrolling NIH-funded trials looking at the role of FMT in 
patients with melanoma who failed PD-1 blockade. Further 
studies are needed to understand the role of the microbiota in 
relation to cancer treatment, including in CRC.

In the case of colorectal cancers, F. nucleatum has been 
consistently linked to neoplastic development. Yu et al 
demonstrated that F. nucleatum enrichment was associated 
with recurrent disease, and was also interestingly associated 
with chemotherapeutic resistance (Fig.  2E) [160,161]. 
Transfection with F. nucleatum in HCT116 and HT29 CRC cell 
lines was shown to decrease apoptosis secondary to oxaliplatin 
and 5-fluorouracil. As previously described, F. nucleatum has 
been implicated in the activation of the Wnt pathway. The 
Wnt signaling pathway has been associated with mutations in 
APC, key to the canonical CRC pathway [162]. This is clearly 
an important pathway in neoplasia development, and while 
therapeutics acting on it are not currently available, several are 
under investigation [163].

Moving forward, the microbiome is likely to play a role both 
in our understanding of cancer development, and as tool for 
modulating risk and treating disease. While we have seen time 
and time again the difficulties involved in diet modification, 
understanding the role of a likely intermediary, the microbiome, 

may help prevent development of disease through targeted 
therapies. As we solidify the connections between pathogenic 
species and neoplasms, it would be rational to anticipate that 
targeted antibiotic regimens may be developed, and probiotics 
and FMT may be developed to repopulate the gastrointestinal 
tract with health-provoking populations. Alternatively, the 
microbiome may be leveraged to help with treatment efficacy, 
again through repopulation of specific populations through 
probiotics or through transplantation of key microbiota.

Concluding remarks

We are just beginning to understand the role of the 
microbiome in human health and disease. Over the past 
decade, collaborative work has brought the role of the 
microbiome to the forefront of medical literature and is 
enriching our understanding of multiple diseases. The 
microbiome’s association with CRC is undeniable at this 
time. We are still working to understand the key microbiota, 
the impact of microbial communities and the mechanisms by 
which the microbiota interact with the human host. Ultimately, 
in any study of the microbiota, there are rarely bacteria that 
are clearly “good” or “bad.” However, multiple bacterial players, 
byproducts and interactions have already been identified as 
provoking or supporting neoplasia. Ultimately, our growing 
knowledge of the microbiota is anticipated to answer some 
of the questions regarding spontaneous cancer development, 
dietary links and treatment responses.
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