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Systems biology in inflammatory bowel diseases: on the way to 
precision medicine

Nikolas Dovrolis, Eirini Filidou, George Kolios
Democritus University of Thrace, Alexandroupolis, Greece

Abstract Inflammatory bowel diseases (IBD) are chronic and recurrent inflammatory disorders of the 
gastrointestinal tract. The elucidation of their etiopathology requires complex and multiple 
approaches. Systems biology has come to fulfill this need in approaching the pathogenetic 
mechanisms of IBD and its etiopathology, in a comprehensive way, by combining data from 
different scientific sources. In combination with bioinformatics and network medicine, it uses 
principles from computer science, mathematics, physics, chemistry, biology, medicine and 
computational tools to achieve its purposes. Systems biology utilizes scientific sources that provide 
data from omics studies (e.g., genomics, transcriptomics, etc.) and clinical observations, whose 
combined analysis leads to network formation and ultimately to a more integrative image of 
disease etiopathogenesis. In this review, we analyze the current literature on the methods and the 
tools utilized by systems biology in order to cover an innovative and exciting field: IBD-omics.
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Introduction

Complexity is one of the first words which come to mind 
when trying to decipher human health and the mechanisms 
behind the operation of cells, tissues and biological systems 
in general are vast and intertwined. Chronic and recurrent 
inflammatory disorders, such as inflammatory bowel diseases 
(IBD) and their 2 main representatives Crohn’s disease (CD) and 
ulcerative colitis (UC), require complex and multiple approaches 
so that one can study every aspect of their etiopathology. Fig. 1 
showcases the complex disease background of IBD, which in 
turn requires sophisticated approaches for its elucidation.

Systems biology [1], systems bioinformatics [2], 
computational biology [3], network medicine [4], and several 
other terms have been coined in recent years to denote the 
interdisciplinary field whose goal is to approach health as the 
integration of individual biological data and functions, using 
principles from computer science, mathematics, physics, 
chemistry, and computational tools. Omics data (genomics, 

transcriptomics, metabolomics, metagenomics, etc.; Table  1), 
along with clinical data and observations, are analyzed and 
associated with specific phenotypes forming networks of 
interacting entities. The suffix “-omics” in the name of a scientific 
field (e.g., genomics) refers to the comprehensive or global study 
of factors that may be implicated in disease pathogenesis [5].

In recent years, the principles and practices of systems biology 
have been applied to a multitude of human health aspects, allowing 
scientists to gain better insights and help drive therapeutic 
approaches. In unifactorial and multifactorial conditions alike, 
computational tools and algorithmic implementations have 
produced many critical observations in the study of obesity [6,7], 
diabetes [8,9], cardiovascular disease [10,11], autoimmune- [12,13] 
and inflammation-related conditions [14,15], neurodevelopment 
and neurodegeneration [16,17], lung disorders [18,19], 
cancer [20,21], and a variety of other diseases. Computational drug 
discovery [22,23] and repositioning [24,25] have also benefited 
greatly from systemic approaches, allowing chemical compounds 
and molecules to be studied for targets in the mechanisms behind 
specific diseases.

In this review, we cover an innovative and exciting field: 
IBD-omics.

IBD-omics

IBD etiopathology is not completely known, yet various 
factors from different origins and systems are implicated 
in it [26]. Among these, it is known that the genetic background 
and the epigenetic modifications play an important role 
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in disease predisposition, prognosis, and response to 
treatment [27]. It is also known that environmental factors may 
exacerbate or ameliorate patients’ clinical symptoms and that 
the microbial composition and the metabolic profile of IBD 
patients differ from healthy individuals and may be the result 
or the cause of the disease’s manifestation [28,29]. Additionally, 
there is accumulated knowledge on how the immune system 
and several expressed proinflammatory and profibrotic 
molecules are involved in disease pathogenesis [30]. However, 
these factors do not act alone: on the contrary, they synergize 
and shape the complex pathophysiology of IBD.

IBD-omics examine specific features involved in IBD, 
highlighting the imperative to employ methodologies that study 
and model all the existing interactions leading to knowledge 
acquisition (Fig. 2). In the subsequent sections, we identify and 
discuss the various molecular systems that shape the IBD field.

Genomics in IBD

DNA, the fundamental basis of life, was first discovered in 
1869 by a Swiss physician and biologist, Johannes Friedrich 

Miescher [31]. Since then, huge progress has been made, 
including the discovery of the DNA composition by Albrecht 
Kossel and Phoebus Levene and its structure by Watson 
and Crick; however, most important was the initiation and 
completion of the Human Genome Project (HGP), which 
succeeded in sequencing the whole human genome [32]. 
The term “genome” refers to the total gene composition of 
each organism and in humans, only about 2% of the genome 
(~20,000 genes) is translated into proteins. Nonetheless, the 
rest of the genome does not contain “junk” sequences, as first 
believed, but ones important for cell survival, functionality and 
evolution, such as non-coding RNAs, regulatory DNA regions, 
LINEs, SINEs, and introns [33].

Another goal of the HGP was to identify single nucleotide 
polymorphisms (SNPs), a single nucleotide substitution in 
DNA, which have been found to be the most common genetic 
variants and were later used in genome-association studies [34]. 
During the early 2000s, the first genome-wide association 
studies (GWAS) started to emerge and it was Klein et al that 
published the first GWAS on age-related macular degeneration, 
highlighting several gene mutations associated with this 
disease [35]. Since then, the number of articles reporting 
GWAS on various diseases has grown exponentially [36].

The basic principle of GWAS is that complex genetic 
diseases are associated with multiple and often common genetic 
polymorphisms; they are thus referred to as polygenic. The first 
part of GWAS methodology includes whole DNA extraction 
from patient and control samples, such as blood, followed by 
genetic sequencing for SNPs of specific genes, as described in 
the Methodology section of Guo et al [37]. For this purpose, 
chips containing genome-wide SNPs have been developed to 
test for common genetic variations among the population. 
Next, results are analyzed using various approaches. If an 
SNP frequently appears in the patient group, with a very high 
statistical significance, such as P<5×10-8, then the genetic 
region that includes this SNP is considered to be a risk locus 
and therefore associated with the disease [38]. In other words, 
GWAS may accurately associate any specific SNP with a disease 
trait, outcome, or even response to treatment, excluding at the 
same time any insignificant difference between patients and 
controls [39,40].

Even before the GWAS era, hypothesis-driven studies 
reported the first gene to be associated with susceptibility 

Table 1 Definitions of omics

Type of omics Definition

Genomics Multidisciplinary approach to studying, quantifying and characterizing all the genes and their mutations in a given sample

Epigenomics The scientific field that studies the environment and genome interactions and the manner that these interactions may 
regulate gene expression

Transcriptomics The field of science that measures RNA expression in samples of various tissues and
allows for measurable differences and identification of how gene interactions transpire

Proteomics Offers the opportunity for large-scale detection, identification and characterization of the whole protein expression of a 
given cell or tissue

Metabolomics The study of metabolic processes and changes in metabolite production in an organism

Microbiome The total genetic composition of the microflora in a specific organ
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Figure 1 Graphical representation of -omes studied by inflammatory bowel 
disease (IBD)-omics: The genome (red) remains unchanged regardless 
of disease phase, whereas the epigenome (yellow) could be enriched as 
the disease progresses. During the disease the transcriptome (green) 
and proteome (blue) vary, usually increasing, while the gut microflora 
(dark-yellow) loses biodiversity. Finally, the metabolome (magenta) 
presents high variability, affected by both the host and the microflora
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to CD, the nucleotide-binding oligomerization domain-
containing protein 2 (NOD2) [41,42]. NOD2 plays a significant 
role in inflammation as it is implicated in the activation of 
nuclear factor (NF)-κB, responsible for the activation of 
numerous genes of the innate and adaptive immunity [43]. 
In 2006, Duerr et al published the first GWAS on IBD and 
reported a strong association between CD patients and an 
SNP located in the IL23R gene [44]. Since then, many more 
GWA studies took place, highlighting susceptibility loci in IBD 
patients, such as ATG16L1, IRGM, TNFSF15, PTPN2, IL12B, 
JAK2, STAT3 and many more that showed strong association 
with CD patients [38].

Another technological milestone in genomics was the 
development of the Immunochip. Based on the observation 
that many chronic and autoimmune diseases share common 
genetic traits, researchers developed a chip, the Immunochip, 
which contained about 200,000 SNPs and 800 small insertion–
deletions found to be associated with different autoimmune 
disorders [39,45]. Using this technology, Jostins et al carried 
out a large scale meta-analysis and identified 163 genetic loci 
associated with CD, UC, or both [46]. Since then, the use of 
Immunochip has highlighted new genetic variants that are 
associated with IBD, the clinical course of the disease and even 
adverse events following treatment with anti-tumor necrosis 
factor (TNF) agents [47-49].

As mentioned above, GWA studies are limited in associating 
only common genetic variants with a disease trait, outcome 
or response to a treatment. This limitation was overcome by 
next-generation sequencing (NGS) technologies, which focus 
on studying rare genetic variants [40]. NGS not only offered 

the opportunity to study rare genetic variants, but also sped 
up the sequencing process and significantly lowered its cost. 
One of the technologies that emerged during the NGS era was 
targeted genome sequencing, where only parts of the genome 
are selectively sequenced and studied; this is accomplished by 
the use of DNA or RNA probes that specifically target and bind 
to the regions of interest in the DNA sequence. Whole exome 
sequencing (WES) is one example that arose from the use of 
these technologies [50].

WES aims at sequencing only the part of the genome that 
is translated into proteins [40]. Previous WES studies have 
identified new genetic variants associated with susceptibility 
to IBD, such as missense mutations in the genes PRDM1, 
NDP52, IL17REL, and CSF2RB [51-53]. A recent WES study 
on an Ashkenazi Jewish IBD population highlighted genetic 
variants in the genes NOD2, ZNF366 and MDGA1 associated 
with IBD, but failed to confirm previous associations with 
genes such as THEMIS, MCOLN2 and NLRP2 [54]. Similarly, 
Onoufriadis et al found a strong association between a rare 
variant in the NLRP7 gene and UC patients who originated 
from the UK, but not with CD patients, probably due to the 
small size of the CD patient group [55]. Very early onset 
IBD (VEOIBD), a severe variety of IBD that may manifest 
in children, has also been the focus of WES studies and 
researchers have identified rare genetic variants in several 
genes associated with VEOIBD, such as NOX1, NOD2, 
IL10RA and ADAM17 [56-60].

Genomic studies have shown that CD and UC may share 
the same genetic risk factors for susceptibility, but have also 
reported different genetic loci specifically associated with 

Figure  2 The plethora of methodologies and their experimental results, which can be combined to elucidate inflammatory bowel disease 
pathophysiology and molecular background
IBD-omics, inflammatory bowel disease-omics; NMR, nuclear magnetic resonance; HPLC, high-performance liquid chromatography; SNP, single 
nucleotide polymorphism; CLIP-seq, cross-linking immunoprecipitation-sequencing; RNAseq, RNA sequencing; qPCR, quantitative polymerase chain 
reaction; ChIP-seq, chromatin immunoprecipitation sequencing
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either disease or either disease’s subphenotype. This discovery 
may offer clinicians a useful tool for distinguishing CD’s 
subphenotypes and CD from UC, especially in cases where 
clinical and endoscopic criteria fail to do so [61]. Nonetheless, 
the genetic background of the population plays a significant 
role, as some genetic risk factors seem to be ethnic-specific, 
with different frequencies being reported in studies that 
include patients of different ethnicities [62-65].

Epigenomics in IBD

Beyond genetic factors implicated in CD and UC, which 
account for 13.6% and 7.5%, of disease diversity respectively, 
environmental factors also contribute to IBD pathogenesis and 
may affect and alter the genetic background. Environmental 
elements that interact with DNA components and regulate its 
function are called epigenetic factors. Epigenetics is the field of 
science that studies the interactions between environment and 
genome and the manner that these interactions may regulate 
gene expression. DNA methylation and histone modifications 
are the main epigenetic modifications. Although they were 
first believed to be non-inheritable, recent studies suggest 
the opposite and thus may play a significant role in IBD 
pathogenesis [66].

DNA methylation occurs when the DNA methyl-
transferases (DNMTs) transfer a methyl group to cytosines, 
resulting in the formation of 5-methylcytosine. If this reaction 
takes place in regions of gene promoters, then it leads to 
obstruction of transcriptional factor binding and ultimately, 
to suppression of gene expression. DNA methylation is also 
implicated in histone modification, and together they regulate 
the expression patterns of cells [67,68]. The most common 
method for studying DNA methylation was first described by 
Frommer et al. Briefly, addition of sodium bisulfite to genomic 
DNA results in the conversion of non-methylated cytosines 
to uracils, while leaving methylated cytosines intact. Next, 
the methylation status of the gene of interest is calculated by 
performing methylation-specific polymerase chain reaction 
(PCR) [69].

In IBD, 3 types of DNMTs have been found to be implicated 
in its pathogenesis: DNMT1, DNMT3a and DNMT3b. 
DNMT1 and DNMT3b have been found to be elevated in 
inflamed mucosa sites of UC patients, while genetic variants 
of the DNMT3a gene have been associated with CD [70]. 
In a methylation-profiling study that included female-only 
CD patients, Li Yim et al found more than 4000 positions to 
be differentially methylated and to be associated with over 
2700 genes in CD patients, out of which two were the most 
significant and located in PTPRN2 and BCL11A genes. The 
same investigators also identified 8 differentially methylated 
regions (DMRs) close to 8 different genes, and some of these 
genes were associated with immune-related pathways [71]. 
Regarding UC patients, Kang et al also found differentially 
methylated patterns in UC patients with 3 genes, FAM217B, 
KIAA1614 and RIBC2, being hypermethylated; thus, this 
might be a tool for distinguishing UC patients from healthy 

individuals [72]. In a recent study, mucosal biopsies taken 
from UC patients showed different methylation patterns 
from those of healthy individuals; UC patients showed 
hyper-methylation or hypo-methylation in genes involved in 
homeostasis and defense, or in immune response pathways, 
respectively [73]. An epigenome-wide association study 
revealed that IBD patients bear differentially methylated 
positions (DMPs) compared with healthy individuals and 
most of these DMPs found in IBD cases were shared between 
CD and UC patients. Among the top IBD-associated DMPs 
were positions located in the RPS6KA2, IL23A and TNFSF10 
genes and among the IBD-related DMRs were regions near 
the genes VMP1, ITGB2, WDR8 and TXK [74]. In a similar 
study that included pediatric patients, Howell et al found 
that intestinal epithelial cells from IBD patients had different 
methylated patterns from controls and the methylation 
pattern was not only disease-specific but also gut-segment 
specific [75].

Histone modifications are another epigenetic mechanism 
that regulates gene expression; among these, histone 
acetylation and methylation are the best studied [76]. Histone 
acetylation takes place when a histone acetyl transferase adds 
an acetyl group to the amino-acid lysine of the histones, 
resulting in transcriptional enabling, while its removal by 
histone deacetylases (HDACs) leads to transcription blocking. 
On the other hand, histone methylation can either enable 
or block transcription, depending on the region where the 
methyl group is attached [27,76]. A well-established method 
for studying histone modifications is the use of chromatin 
immunoprecipitation (ChIP) protocol, where the chromatin 
structure is extracted, fragmentated and immunoprecipitated 
and, finally, the DNA is studied using various protocols, 
such as microarrays (ChIP-on-chip) or next-generation 
sequencing (ChiP-seq), that will enable the detection and 
quantification of modifications that occurred at the point of 
interest [77-79].

There are only few data regarding histone modifications in 
IBD. Bai et al found that lysine acetyltransferase 2B expression 
was significantly reduced in inflamed tissues of IBD patients, 
which resulted in low levels of histone H4 lysine 5 acetylation 
and, subsequently, in downregulation of interleukin (IL)-10 
expression [80]. Previous in vitro studies have shown that 
Th17 immunological responses may be subject to histone 
modifications. Primary Th17  cells isolated from healthy 
individuals expressed high levels of IL-17A, and not IL-17F, 
upon stimulation with prostaglandin E2  and/or IL-23 plus 
IL-1β. Further investigation revealed that the expression 
of 2 cytokines, IL-17A and IL-17F, was regulated by histone 
modifications; IL-17F expression was silenced due to histone 
methylation of H3, whereas IL-17A was overexpressed as a 
result of different patterns of methylation and acetylation of 
H3 [81]. Along similar lines, Ghadimi et al showed that certain 
commensal probiotics may inhibit the NF-κB transcriptional 
factor by reducing the histone acetylation levels [82]. Finally, 
data from murine models of colitis suggest that the inhibition 
HDACs may lead to the induction of apoptosis and Foxp3 
expression and to the suppression of proinflammatory cytokine 
expression [76].
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Transcriptomics in IBD

If we consider the genome to be the answer to “who is 
responsible for our genetic and health background?”, the 
transcriptome answers the question “what does the genome do 
at any given time/cell?”. As DNA gets transcribed to RNA, by 
RNA polymerase in the nucleus [83], it allows for measurable 
differences and identification of how gene interactions transpire 
(infer function via gene expression [84]) and what genetic 
information gets passed along in the “genotype to phenotype” 
pipeline. We now know that a considerable number of genes 
are to be transcribed to RNA and translated into proteins, 
while others regulate and assist as a variety of RNAs. Messenger 
RNA (mRNA) is our main source of characterizing coding 
genes while ribosomal (rRNA), micro (miRNA), long non-
coding (lncRNA), transfer (tRNA), small nuclear (snRNA) and 
others are performing functions that make protein synthesis 
possible [85-87].

One of the advantages of modern technological advances 
has been the ability to measure gene expression in samples 
of various tissues after RNA isolation [88,89]. Quantitative 
real-time PCR (qPCR) [90], cap analysis gene expression 
(CAGE) [91], serial analysis of gene expression (SAGE) [92], 
microarrays [93], and total RNA sequencing (RNA-seq) [94] 
are just a few of the methodologies allowing us to quantify 
RNA transcripts. Differential gene expression analysis 
(DGEA) [95-97] enables studying the expression of specific 
genes under various conditions, tissues and timepoints and the 
juxtaposition between them to detect statistically significant 
differences that may signify association. For example, if a gene 
is found to be over-  or under-expressed in several disease-
associated samples versus controls, it allows for the assumption 
that this gene is implicated in the pathophysiology of the 
disease and the signaling pathways it is involved in are affected. 
Databases like KEGG [98] and REACTOME [99], supported 
by bioinformatics platforms like Enrichr [100] and Ingenuity 
Pathway Analysis (IPA) [101], enable researchers to identify 
these pathways and perform further analyses based on them.

In the past decades these techniques, along with various 
other omics, have assisted in identifying the pathophysiological 
mechanisms of IBD. In 2005 Costello et al [102], using cDNA 
arrays of colonic mucosa samples, identified several genes 
associated with UC and CD, highlighting the complex nature of 
IBD but also distinguishing the phenotypes. Following a similar 
motif, Schmidt et al [103] observed that IL-23p19 and IL-27p28 
are elevated in CD but not in UC. Carey et al [104] highlighted 
IL-6:STAT3-dependent biological networks upregulated in IBD 
patients, regulating leukocyte recruitment, HLA expression, 
angiogenesis and tissue remodeling. Bamias et al [105] studied 
the difference in mucosal expression of housekeeping genes 
during IBD and concluded that it is altered, proposing other 
genes (namely RPLPO and RPS9) as reference and extended 
validation. Sugihara et al [106] described elevated C3 and IL‐17 
mRNA expressions in the inflamed mucosa of IBD patients. In 
Fransen et al [107], a correlation between IBD and IL6, IL23A 
and RORC was identified. Chiriac et al [108], using RNA-seq, 
found that colon tissues from IBD patients and mice with DSS 

colitis exhibited increased expression of IL28 versus controls, 
leading them to test and validate that IL28 administration in 
the animal model promotes mucosal healing. Hong et al [109], 
via RNA-seq, pinpointed differences between the inflamed and 
non-inflamed intestinal mucosa of CD patients and healthy 
controls. Of high interest in recent years is the study of non-
coding RNAs and their role, as depicted in reviews and original 
articles [110-116].

Finally, Telesco et al [117], Arijs et al [118], Nunes et al [119], 
Lucafò et al [120], and Váradi et al [121], among others, have 
studied the response to specific therapeutic interventions to 
identify molecular targets and separate responders from non-
responders.

Proteomics in IBD

The term “proteome” refers to the total proteins, including 
all isoforms or post-translational modifications that can be 
expressed by the genome. Thus, proteomic analysis provides 
an opportunity for the large scale detection, identification and 
characterization of the whole protein expression of a given cell 
or tissue, making it the ideal tool for biomarker discovery [122]. 
Currently, there are several different approaches to proteomic 
analysis; in this review we try to briefly cover most of them.

Liquid chromatography and mass-spectrometry (MS) 
are the 2 widely used techniques for protein separation and 
identification. Liquid chromatography aims at separating the 
components found in a mixture, depending on their size, shape, 
charge or affinity for a certain ligand; there are thus many 
different types of chromatography [123]. MS is used for the 
identification of proteins, peptides or their post-translational 
modifications, and over the years several different techniques 
have been developed, from electrospray ionization (ESI) and 
matrix-assisted laser desorption/ionization (MALDI) to the 
new generation of mass analyzers and complex multistage 
instruments, such as hybrid quadrupole time-of-flight (Q-Q-
TOF) [124]. Nonetheless, the most common MS techniques 
include surface-enhanced laser desorption/ionization time-
of-flight (SELDI-TOF) and MALDI time-time-of-flight 
(MALDI-TOF). Identification of proteins based on these 
techniques requires, first, protein digestion into peptides, then 
measurement of the mass-to-charge ratio in an electric field 
and, finally, investigation of the peptide mass signatures in 
relation to a database of known proteins [122]. Beyond liquid 
chromatography and MS, more complex and quantitative 
techniques have been developed, such as 2D-PAGE, 2D-DIGE, 
ICAT, SILAC, proteolytic 18O labeling, iTRAQ and protein/
antibody arrays (chips); a technical description of these is 
beyond the scope of this review but they were nicely analyzed 
by Alex et al [122].

By using any of the aforementioned techniques, proteomics 
are able to compare expression profiles between IBD patients 
and controls, which may ultimately lead to biomarker 
discovery. Over 10  years ago, Meuwis et al performed the 
first proteomic analysis in serum samples of IBD patients 
and controls and found 4 possible biomarkers (PF4, MRP8, 
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FIBA and Hpalpha2) that could discriminate IBD patients 
from healthy individuals, thus providing a possible diagnostic 
tool [125]. During the same year, a similar proteomic study on 
intestinal epithelial cells from IBD patients revealed expression 
differences between inflamed and non-inflamed colonic regions 
in molecular pathways that regulate signal transduction, stress 
response and energy metabolism; among these, the most 
outstanding differences were in the expression of programmed 
cell death protein 8 and annexin 2A [126]. Along similar 
lines, Nanni et al observed statistically significant expression 
changes in the intestinal epithelial cells of CD patients and 
healthy individuals; some of these proteins, such as heat shock 
protein 70 and tryptase alpha-1 precursor, were upregulated in 
CD patients, while others, such as the nuclear protein Annexin 
A1 were downregulated [127]. Another interesting study on 
mononuclear cells from IBD patients and healthy donors was 
able not only to distinguish the expression profiles of patients 
and controls, but also to discriminate between CD and UC 
patients [128]. In a recent proteomic analysis, Manfredi et al 
showed that proteins related to the acute phase response and 
the complement activity were upregulated in serum samples 
from IBD patients, whereas proteins implicated in protease 
function, blood coagulation, oxygen transport and lipoprotein 
metabolism were downregulated [129]. Expression differences 
in genes related to immune responses between IBD patients 
and controls have also been identified, and according to the 
disease location or behavior, these expression patterns may 
vary among CD subtypes [130]. Proteomic analysis of colonic 
mucosal-luminal interface aspirates from pediatric patients 
with IBD-associated colitis led to the identification of possible 
markers for the diagnosis of UC [131]. Apart from diagnostic 
biomarkers that can enable easier discrimination between IBD 
adult or pediatric patients and healthy individuals or CD and 
UC patients, proteomic studies have also revealed possible 
biomarkers associated with response to treatment. Specifically, 
Meuwis et al conducted a small pilot study in CD patients 
treated with infliximab and found that PF4 was associated with 
response to treatment [132].

Metabolomics in IBD

Metabolomics is the scientific field that studies the metabolic 
processes and changes in metabolite production that occur in 
an organism. Metabolomic studies are usually performed in 
noninvasive samples, such as blood, urine, stool and swabs, 
and the resulting metabolic profile is the outcome of at least 
3 different sources; dietary compounds, xenobiotics from 
the environment, and metabolic products of the microflora. 
Therefore, metabolomics studies in IBD usually examine the 
metabolic relationship between the host and the gut microflora 
and the factors that may influence this relationship [133].

The 2 most common technologies used in the field of 
metabolomics are MS, analyzed in the previous section 
(Proteomics), and nuclear magnetic resonance (NMR)-
spectroscopy [133]. NMR is a widely used technique in 
chemistry that provides information about the molecular 

structure of the examined compounds and their absolute or 
relative concentration in the sample. The main differences 
between MS and NMR-spectroscopy concern the sensitivity, 
and the sample size and preparation required. MS is the more 
sensitive method and is able to detect and identify metabolites 
with a thousand times higher sensitivity than NMR-
spectroscopy. Regarding the sample size, MS methods usually 
require volumes of 10-30 μL, whereas NMR samples need to be 
about 300 μL. Lastly, NMR methods do not require any specific 
sample preparation other than sample dilutions, whereas, as 
described above, MS requires a series of steps before sample 
analysis [134].

The first metabolomics study was performed in fecal 
samples from twin CD patients and twin healthy individuals 
and one of the findings was that the metabolic profile differed 
among patients with ileal disease, patients with colonic 
disease and healthy individuals. The differences in metabolite 
content were identified to be on pathways concerning the 
metabolism or synthesis of amino acids, fatty acids, bile acids 
and arachidonic acid; thus, this study suggested possible 
metabolic biomarkers for disease diagnosis and phenotype 
characterization [135]. Along similar lines, Bjerrum et al 
performed a metabolomic study in patients with active or 
inactive UC and healthy individuals and found that the 
metabolomic profile of colonic biopsies and colonic epithelial 
cells differed between active UC and controls. The most 
interesting result, however, was the fact that, although inactive 
UC patients were free of clinical and histological findings, the 
metabolic profile of 20% of them matched with that of active 
UC patients, suggesting again that metabolomic analysis might 
be a useful tool for disease prognosis [136]. In a recent study, 
Diab et al investigated the metabolite levels of omega-3 and 
omega-6 polyunsaturated fatty acids in colonic biopsies taken 
from healthy controls and treatment-naïve or deep remission 
UC patients. They found that levels of omega-6 metabolites 
such as prostaglandin E2, thromboxane, trans-leukotriene, 
and 12-hydroxy-eicosatetraenoic acid, known to be actively 
involved in inflammation, were significantly higher in 
treatment-naïve UC patients compared with the other 2 groups, 
while levels of omega-3 metabolites were lower. Furthermore, 
the elevated levels of omega-6 metabolites correlated with 
increased proinflammatory cytokine expression, suggesting 
that polyunsaturated fatty acid metabolism plays a significant 
role during the onset of the disease [137]. In another study, 
Keshteli et al highlighted metabolic differences in urine and 
serum samples between UC patients in remission or relapse. 
They showed that significantly higher levels of trans-aconitate, 
3-hydroxybutyrate, acetoacetate and acetone, and lower 
levels of acetamide and cystine were found in UC patients 
experiencing a clinical relapse, suggesting possible biomarkers 
for disease prognosis [138]. Metabolomic signatures could 
also contribute to disease categorization, as in a recent study 
serum metabolic profiles differed among healthy individuals 
and UC or CD patients [139]. Apart from the host, changes in 
the metabolic profile of gut microflora have also been found 
between healthy individuals and IBD patients. One of the first 
studies that compared the metabolomic signatures in fecal 
samples from healthy individuals and patients with UC or 
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irritable bowel syndrome showed that taurine and cadaverine 
levels were higher in UC patients [140]. Furthermore, our 
research group, using in silico approaches, has recently reported 
that the microbial metabolites of CD B2 or B3 behavioral sub-
phenotypes differ from the B1 sub-phenotype, suggesting 
that metabolomic analysis might contribute to disease sub-
phenotype classification [141].

Overall, metabolomics is a promising tool for disease 
diagnosis, prognosis and classification and its now low-cost and 
easy-to-perform evaluations could add significant information 
in everyday clinical practice.

Microbiome in IBD: the meta-paradigm

So far, this review has presented various -omics approaches 
that help characterize and analyze the background of human 
health. But is this the full picture or is it all a matter of 
application? The truth is that the targets of these techniques 
are usually only one tenth of the cells in the human body. 
What has happened in recent years is a paradigm shift towards 
exploring the rest; the identity and function of our symbionts. 
The microflora or microbiota, as they are referred to in the 
literature, are viruses, fungi, archaea, and, most importantly, 
bacteria that live primarily in the gastrointestinal tract but also 
on the skin, in the mouth, nose and lungs. Their total genetic 
composition is called the microbiome and has become the 
new focus for genomics, transcriptomics, metabolomics and 
various other targeted and blanket approaches using state-of-
the-art and established technologies [142-144].

Microbiota are usually satisfied staying in an ever-evolving 
cycle of mutualistic bliss (albeit a fragile one); the homeostasis. 
During homeostasis the microbiome’s function [145] is 
associated with human health by providing (in an interaction 
with the gut mucosa and the immune system [146-148]) 
defense against pathogens, modulation of inflammation, 
production of energy and vitamins, and assistance with the host’s 
metabolism and nutrient intake. When homeostasis becomes 
unbalanced and microbial populations and functions are 
altered, the phenomenon is called dysbiosis. It has been directly 
associated [149-151] with the onset, progression and therapeutic 
response of multiple health conditions, including lung-associated 
disorders [152,153], obesity [154,155], diabetes [156,157], 
cardiovascular disease and atherosclerosis [158-161], chronic 
kidney disease [162-164], cancer [165-167], neurological and 
neuropsychiatric disorders [168-171], and, in the spirit of this 
review, IBD [172-174].

As the microbiome comes under extensive scrutiny, new 
insights into its association with IBD have come to light to 
present a parallel alteration in behavior and phenotype [175]. 
In 2008 Huttenhower et al [176] identified Faecalibacterium 
prausnitzii’s anti-inflammatory role in CD, and later 
studies [177-179] confirmed its reduction during dysbiosis. 
Robinson et al [180], using an animal model of colitis, identified 
several phylogenetic and metabolic associated changes in the 
microbiome similar to what happens in human IBD. Chu 
et al [181] described how outer membrane vesicles secreted by 

Bacteroides fragilis play a role in the immunomodulation of IBD 
in partnership with the NOD2 and ATG16L1 genes. Halfvarson 
et al [182], in a longitudinal study of the microbiome, proposed 
and demonstrated diversion from a bacterial healthy plane 
during IBD, while also studying the role of f-calprotectin 
without finding any statistically significant association. In a 
recent work, our group has also identified dysbiosis associated 
with the complex behavioral sub-phenotypes of CD (stricturing 
and penetrating) and the differential diversity and function of 
the microbiome versus the inflammatory sub-phenotype [183]. 
Ananthakrishnan et al [184] have studied the response to anti-
integrin biologic therapy in association with the microbiome 
and have concluded that microbial function and diversity in 
early stages of therapy might be able to predict its efficacy. 
Finally, many studies have focused on fecal microbiota 
transplantation (FMT) [185-189] as a potential therapeutic 
action versus IBD, but also as a possible irritant [190,191].

From systems biology to treating IBD

As it stands, we now possess an abundance of tools and 
technical methodologies to analyze and try to comprehend 
the genetic and molecular background of IBD. This is, though, 
just the first step in the war waged against it. We are facing 
a group of diseases that differ greatly in their symptomology 
and progression, but also in the approaches that should be 
taken to treat them. Up to now, both CD and UC have been 
considered manageable but untreatable, with a heavy burden 
on the quality of life. This, combined with the long and tedious 
process of finding a potential therapeutic target, identifying/
validating a chemical compound/molecule and ultimately 
providing it to the general public, means that changing IBD’s 
status to treatable may still be far away.

Systems biology has provided the tools to ameliorate the 
situation in all steps along the way. We have already discussed 
how  -omics approaches highlight potential pharmacological 
targets, but what about drug identification and validation? 
Or their deployment and efficacy in the general population? 
Drug repositioning [192-194] has been introduced to cost-
effectively, accurately and efficiently identify drugs that 
can help regulate the pathology of a disease. It allows for 
repurposing pharmaceuticals already on the market to be 
used on new targets. These drugs have already undergone 
extensive preclinical and clinical trials, have known side-effects 
and are generally considered safe for the patient under other 
conditions. Computational drug repositioning, because of 
its nature in utilizing -omics data, is a step towards precision 
medicine. By identifying drugs for specific patients/patient 
groups, there is no need to classify and account for responders 
and non-responders to treatment, since the drugs discovered 
are specifically identified using the patient’s genetic and 
molecular background [195-199].

Over the years, by using all the aforementioned approaches 
of  -omics, possible therapeutic targets have been identified, 
and this has led to the development of biological therapies and, 
ultimately, to personalized medicine. The milestone during 
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all those years of research was the use of anti-TNF agents 
in treating IBD patients. Infliximab was the first chimeric 
monoclonal antibody against TNF-α, a proinflammatory 
cytokine with a central role in systemic inflammation. Since 
then, 3 other anti-TNF agents have been approved for IBD; 
adalimumab, certolizumab pegol, and golimumab [200]. 
Beyond anti-TNF agents, many other biological therapies 
against proinflammatory ILs, such as ustekinumab, intracellular 
signaling targets, such as Janus kinase inhibitors (tofacitinib, 
filgotinib, and upadacitinib), and cell adhesion molecules, 
such as natalizumab, vedolizumab, etrolizumab, AJM300 and 
PF-00547659 either have been approved for IBD treatment or 
are currently under investigation in clinical trials [200-204].

Biological data integration and networks: the way 
forward

As with all multidisciplinary approaches, medical systems 
biology must advance on multiple fronts to be effective. Its goals 
and hypotheses must be reassessed and its methodologies must be 
updated constantly. For example, multidisciplinary approaches 
such as the recently emerged “proteogenomics” (a combination 
of proteomics, genomics, and transcriptomics) can allow for a 
holistic point of view regarding disease pathophysiology [205]. 
Medicine has moved away from a generalized treatment-oriented 
goal to preventive and personalized approaches. The target is no 
longer just to treat a condition, but how to do it effectively and 
efficiently while gaining a better understanding of its methods of 
action. Meanwhile, biological data acquisition and digitization 
techniques (omics) advance every day, producing higher volumes 
of data with higher specificity and precision. Computational 
power and toolkits must keep up with these new challenges. 
New databases, algorithms and user-friendly applications [206-
211] are being developed to support the analysis of said data by 
experts in bioinformatics and physicians alike.

The application of graph and network theory principles 
in the construction and analysis of biological networks 
is arguably the strongest weapon in our arsenal [212]. It 
provides the means to study multiple biological interactions 
in a mathematical way and extract information that might not 
be easily comprehensible otherwise [213]. Genes, proteins, 

microbiota, diseases, drugs and a variety of other entities can 
be linked together and analyzed in a meaningful manner to 
extract significance and association. Perhaps the easiest way 
to understand biological networks is to think of a molecular 
signaling pathway and how genes synergize together to perform 
a function as a whole. But that is only the tip of the iceberg in 
our case; having the accumulated knowledge of past years we 
know which genes are co-expressed in various experiments, to 
which proteins these are being translated to, how those interact 
amongst themselves, how they can provide variability in the 
course of a disease or its treatment, and so forth.

We can approach these networks via different methodologies 
and tools depending on what our target is. Probably the most 
commonly used paradigms include GENEMANIA [214] for gene 
interactions, STRING [215] for protein-protein associations, 
KEGG [216] or REACTOME [99] for signaling pathways, 
and even some powerful solutions like Cytoscape [217] or the 
IGRAPH [218] package for R oriented towards more tech-savvy 
users, but the whole list is very extensive.

In IBD, network approaches are not very popular, with less 
than 400 papers utilizing some kind of network implementation 
having been indexed in PubMed over the last 3  years. Some 
recent examples of different kinds of networks include the 
work of Peters et al [219], with the creation of a complex 
genomic network via a variety of resources and its modeling 
and analysis, the work of Benchimol et al [220], who employed 
distributed network analysis on phenotypic and locational 
data to identify the epidemiology of IBD in Canada, and how 
Coward et al [221] used a network based meta-analysis to 
compare the effectiveness of commonly used IBD treatments.

Concluding remarks

The sections of this review have covered the most 
popular -omics, how they are applied and their implementation 
in IBD studies. Table  2 showcases the results we can expect 
from -omics analyses along with how these can be interpreted 
and utilized in everyday clinical practice. This is important 
because, regardless of the methodology, the ultimate goal 
will always be the usability and effectiveness of the results. 
We neither want nor need more meaningless data, but rather 

Table 2 Inflammatory bowel disease (IBD)-omics, the expected outcome, and its possible applications in clinical practice

IBD-omics Expected outcome Possible applications

Genomics DNA sequencing, SNP identification Predisposition,
diagnosis,
prognosis,
staging,
disease sub-phenotype classification,
response to treatment

Epigenomics Differential patterns of DNA and histone modifications

Transcriptomics Differential expression patterns of RNA (mRNA, rRNA, 
miRNA, lncRNA, tRNA, snRNA)

Proteomics Detection, identification and characterization of whole 
protein expression levels

Metabolomics Detection and identification of metabolite composition

Microbiome Detection, identification and characterization of 
microbial composition and its metabolic profile

SNP, single nucleotide polymorphisms
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clear information about how to approach, evaluate and treat a 
disorder. It is apparent that systems biology is years away from 
being the only solution we will ever need to employ again, but 
is nevertheless a very efficient way to elucidate the knowledge 
we currently have and continue to amass.
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