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Analogy between non-alcoholic steatohepatitis (NASH) and 
hypertension: a stepwise patient-tailored approach for NASH 
treatment

Yaron Ilan
Hadassah Hebrew University Medical Center, Jerusalem, Israel 

Abstract Non-alcoholic steatohepatitis (NASH) is a common liver disorder worldwide. Although 
there has been improvement in our understanding of the natural history and pathogenesis of 
the disease, there is still no approved therapy for NASH. NASH shares many similarities with 
primary hypertension, in that both are extremely common disorders that can easily lead to 
serious complications if left untreated. Both conditions are viewed as “silent killers”, because the 
disease can progress over a period of time prior to the occurrence of potentially deadly outcomes. 
While attempts to find the “miracle pill” for NASH are unrealistic, we can make an analogy with 
the “stepwise combination” approach developed over the last few decades for the treatment of 
hypertension. In the present review, we summarize some of the similarities in the concepts that 
underlie NASH and hypertension. The development of a stepwise patient-tailored method for the 
treatment of NASH is presented.
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disease

Ann Gastroenterol 2018; 31 (3): 296-304

Introduction

Non-alcoholic fatty liver disease (NAFLD) is defined as the 
presence of a significant amount of lipid accumulation in the liver 
without significant alcohol consumption [1]. NAFLD represents 
two distinct entities with two different prognoses: the first is simple 
fat accumulation in the liver; and the second is non-alcoholic 
steatohepatitis (NASH), which comprises necro-inflammation 
and may lead to fibrosis, cirrhosis and hepatocellular carcinoma 
(HCC) [1,2]. NAFLD is the most common cause of chronic liver 
disease worldwide [3]. Despite progress in the understanding of 
the pathophysiology of the disease and diagnostic methods, there 
is still no approved therapy [4,5].

Hypertension (HTN) has been recognized for much longer 
than NASH and the two conditions share many similarities. 
We describe some of the common features of both diseases in 
an effort to determine what hepatologists can learn from HTN 
experts with regard to treatment strategy.

NAFLD and HTN are two global epidemics

NAFLD and HTN are highly common disorders. 
Approximately 90% of HTN cases are classified as essential 
HTN, where the precise cause is unknown [6]. Both secondary 
liver steatosis due to non-NAFLD causes (e.g., HCV genotype 
3, Wilson’s, etc.) and secondary HTN are less common. NAFLD 
is one of the main causes of chronic liver disease globally [7]. 
A recent study determined that the prevalence of NAFLD 
was 24% and that the global prevalence positively correlated 
with the gross national income per capita: Europe observed 
a higher prevalence (28%) than the Middle East (12%) and 
East Asia (19%) [8]. Like NAFLD, HTN is a major contributor 
to the global burden of disease and mortality [9]. A national 
survey estimates the prevalence to be 16-36% [10]. A recent 
review found that the prevalence of treatment-resistant HTN 
(RH) is between 13% and 16% [11]. NAFLD and HTN are 
strongly associated with obesity and insulin resistance states 
including diabetes. HTN is one of the criteria for metabolic 
syndrome  [12]. NAFLD is associated with components of 
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metabolic syndrome. Sixty-six percent of patients older than 
50 years with diabetes or obesity are thought to have NASH 
with advanced fibrosis [2]. However, arterial HTN, which is 
among the various components of metabolic syndrome, was 
found to be the least closely associated with NAFLD [13]. More 
advanced stages of NAFLD are associated with HTN [14,15]. 
Angiotensinogen gene haplotype is associated with the 
prevalence of Japanese NASH [16]. In the absence of major 
risk factors for liver disease, NAFLD is a frequent finding 
in primary aldosteronism. These patients are more insulin 
resistant and have a higher prevalence of NAFLD [17].

NAFLD and HTN are associated with a high risk of 
cardiovascular and kidney diseases

NAFLD and HTN are associated with similar target organ 
damage. The clinical burden of NAFLD is the result of liver-
related morbidity or mortality, although the majority of deaths 
in NAFLD patients are related to cardiovascular disease (CVD) 
and cancer [18]. NAFLD is a risk factor for extrahepatic diseases 
such as CVD, chronic kidney disease (CKD), colorectal cancer, 
and endocrinopathies, which include type 2 diabetes mellitus 
(T2DM), thyroid dysfunction, colorectal neoplasms, and 
osteoporosis [18,19]. The prevalence of NAFLD is three times 
higher in patients with T2DM [20]. Patients with NAFLD are 
also at a higher risk for atherosclerosis [21]. It has been suggested 
that patients with NAFLD should undergo periodic CVD risk 
assessment [22]. Similarly, the association between systolic and 
diastolic HTN and the risk of CVD and renal disease is well 
known. HTN is associated with a higher risk of acute kidney 
injury [23]. The prevalence of HTN is higher and its control 
is more difficult with poor kidney function. The presence and 
severity of CKD increases treatment resistance  [24]. Obese 
individuals are more likely to be at increased risk for developing 
NAFLD, HTN, CVD, and CKD [25].

A recent Consensus analyzed the effect of treatment using 
statins alone, or in combination with pioglitazone and other 
drugs, on CVD as a main cause of death in patients with 
NAFLD, and on liver-related complications of NAFLD or 
NASH, including cirrhosis and hepatocellular carcinoma [26]. 
This Consensus suggested a tailored “HTN-like” therapy.

Prevalent NAFLD may be seen early in the development 
of HTN, even in the absence of other metabolic risk factors. 
Controlling blood pressure among non-obese hypertensive 
patients may be beneficial in preventing or limiting 
NAFLD [27]. The prevalence of NAFLD among persons with 
normal blood pressure, prehypertension (PHT), and HTN was 
16.5, 37.5, and 59.3%, respectively. In multivariate analyses, 
PHT and HTN were associated with elevated odds of NAFLD.

Data support the paradigm of NAFLD as a strong 
determinant for the development of the metabolic syndrome, 
which has potentially relevant clinical implications for 
diagnosing, preventing and treating metabolic syndrome. 
Longitudinal studies support the association of NAFLD with 
either T2DM or metabolic syndrome, and suggest that NAFLD 
precedes the development of both conditions [28].

Based on data from 118 consecutive biopsy-proven NAFLD 
patients, the metabolic syndrome, the homeostatic model 
assessment of insulin resistance, serum total cholesterol, and 
serum uric acid were identified as independent predictors of 
NASH and its individual histological lesions, including fibrosis. 
These factors were suggested as pathogenic drivers of NASH 
and as potential targets for treatment [29].

NAFLD and HTN are multifactorial diseases

The pathogenesis of NAFLD and NASH and the mechanisms 
that lead to liver injury, fibrosis, and HCC are the result of a 
complex interplay between host and environmental factors. 
Genetic, biochemical, immunological, and molecular events 
are associated with disease progression [30]. The pathogenesis 
of HTN, similar to that of NAFLD, involves genetic, endocrine, 
metabolic, immune and nervous system parameters.

In NAFLD, environmental factors play a major role in 
genetically susceptible populations. Diet plays a role in 
this process, as fructose exacerbates NAFLD, while the 
Mediterranean diet exerts a protective effect [31]. A diet rich in 
simple carbohydrates, saturated fat, and highly processed food 
on a background of several genetic variants presents a risk for 
NAFLD [32]. De novo lipogenesis, i.e., hepatic triglyceride 
synthesis, accounts for only 25% of hepatic triglycerides, 
while the role of lipolysis as a factor contributing to hepatic 
triglyceride storage remains unconsidered [33]. Increased liver 
fat induces mitochondrial metabolism and glyceroneogenesis 
and its conversion from lactate to glycerol is used as a substrate 
for gluconeogenesis. Hepatic fat removal, i.e., increased 
mitochondrial β-oxidation and autophagy, contribute to liver 
damage [34-38]. NAFLD typically results from fatty changes 
observed in the absence of competing steatogenic factors in 
dysmetabolic individuals [39]. Reduced metabolic adaptability 
has been described, in which liver fat accumulation increases 
the demands on the liver to control metabolic responses [40].

For HTN, a defect in sodium excretion by the kidney 
is central to the pathogenesis. A congenital reduction in 
nephron number, obesity, hyperleptinemia, a diet rich in salt 
and fructose, increased sympathetic nervous system tone, 
hyperuricemia, renal arteriolar vasoconstriction, and intra-
renal activation of the renin-angiotensin system are significant 
in the pathogenesis.

Gene expression profiling and genome-wide association 
studies have identified disease pathways and polymorphisms 
in genes that determine NAFLD progression [41,42]. The 
polygenic background with multiple independent modifiers 
determines disease prognosis. The risk allele frequencies of 
NAFLD-associated single nucleotide polymorphisms were 
analyzed in distinct populations that have high risk scores [43]. 
Patatin-like phospholipase domain-containing 3 (PNPLA3) 
has both anabolic and catabolic activities in lipid metabolism 
and has been reported to be linked with liver fat content [44]. 
A link from the 148 isoleucine to a methionine protein variant 
of PNPLA3, NAFLD and fibrosis has been described. Genes 
involved in lipolysis, adipokine, and cytokine production 
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are being explored [45-47]. Target genes for peroxisome 
proliferator-activated receptor (PPAR)α, a ligand-activated 
transcription factor, are involved in fatty acid metabolism [48]. 
During PPARα activation, the combination with PPARβ/δ 
agonism improves steatosis, inflammation and fibrosis in 
NAFLD [49].

Genetic congenital (fetal programming) and acquired 
mechanisms for defects in natriuresis increase the risk for 
development of HTN. Genetic polymorphisms regulate sodium 
excretion. It is estimated that 30% of the variance in blood 
pressure relates to genetic factors [9]. Genome-wide studies 
identified more than 65 loci affecting blood pressure [50].

Chronic low-level inflammation is associated with 
the metabolic syndrome [51]. While the liver provides a 
“tolerogenic” environment, abnormal activation of innate 
immune cells triggers inflammation that contributes to hepatic 
injury, fibrosis, and carcinogenesis [52,53]. Innate immune 
cells, the adaptive system, liver macrophage Kupffer cells, 
stellate cells, and dendritic cells contribute to the development 
of fibrosis. Adiponectin, leptin and ghrelin, resistin, visfatin 
and retinol-binding protein 4, along with tumor necrosis factor 
(TNF)-α, interleukin (IL)-6, IL-1, and IL-18 are some of the 
major factors involved [53].

Like NAFLD, HTN is linked with inflammation. Hence, 
both the innate and adaptive immune responses participate in 
this process [54]. Oxidative stress and endothelial dysfunction 
are contributing factors for the development of HTN [6]. 
Increased sympathetic and/or decreased parasympathetic 
outflow or low-grade infections generate neoantigens and 
damage-activated or pathogen-activated molecular patterns, 
which trigger Toll-like receptors on innate cells [54]. Innate 
responses, mediated by monocytes, macrophages, dendritic 
cells, and natural killer cells, contribute to inflammation by 
activating a T-cell-mediated adaptive immune response [54]. 
Activation of the sympathetic nervous system, aging and 
elevated aldosterone are potentially proinflammatory. Intra-
renal T cells are associated with persistence of HTN, suggesting 
induction of a local autoimmune response to neoantigens, such 
as heat shock protein 70 and protein aggregates resulting from 
lipid peroxidation [55].

NAFLD has also been linked with alterations in the 
nervous system. Altered neuroendocrine and autonomic 
signals controlled by the suprachiasmatic nucleus contribute to 
steatosis, obesity and glucose intolerance. Excess free fatty acids 
in hepatocyte storage lead to lipotoxicity, hepatocyte damage, 
and apoptosis. Glucagon-like peptide (GLP)-1 analogues 
stimulate pancreatic β-cell insulin output and affect the liver’s 
free fatty acid metabolism [56].

Likewise, for HTN, the renal sensory afferent nerves and 
efferent sympathetic nerves control the extracellular fluid 
volume and hence the level at which blood pressure is set. 
Afferent and efferent renal innervation contribute to neural 
dysregulation of the kidney in RH [57]. Sympathetic neural 
regulation of renin release and fluid reabsorption in the kidney 
affect HTN. RH is attributed to aldosterone excess in over 
20% of patients. The function of amiloride-sensitive sodium 
channels and mineralocorticoid receptors in the systemic 
vasculature supports aldosterone-mediated RH [58].

The gut microbiome plays a role in the pathogenesis of 
both NAFLD and HTN [59]. Altered intestinal permeability 
supports a link between gut lumen antigenic/toxic substances 
and systemic and liver inflammation in NAFLD [59]. Patients 
with NASH have increased Gram-negative microbiome and 
endotoxemia. Microbial metabolites aid in the development 
of hepatic steatosis and inflammation, NASH and fibrosis [60]. 
Short-chain fatty acids, the products of microbial fermentation, 
enhance intestinal absorption by activating GLP-2 
signaling  [60]. However, many NASH patients show normal 
serum endotoxin levels, indicating that endotoxemia may not 
necessarily be required for the development of NASH [60]. 

Dysbiosis in the gut microbiota has also been described in 
association with HTN in both animal models and humans [61]. 
An abundance of the Firmicutes and Bacteroidetes gut microbes 
has been found in HTN. Decreases in gut microbiota caused by 
antibiotics can increase or decrease blood pressure depending 
on the patient’s genotype. Products of the fermentation of 
nutrients by gut microbiota change the blood pressure by 
altering the expenditure of energy, intestinal metabolism of 
catecholamines, gastrointestinal and renal ion transports, and 
finally, salt sensitivity [61].

NAFLD and HTN are “silent killers” with marked 
interpatient variability in disease progression

In NAFLD and HTN, there is considerable interpatient 
variability in both severity and rate of progression [62]. 
NAFLD and HTN can be present with different phenotypes 
as a result of the multiple factors associated with disease 
progression. Patients with NAFLD can present with simple 
steatosis, different stages of fibrosis and pre-cirrhotic NASH, 
compensated cirrhosis, or advanced NASH cirrhosis. The rate 
of disease progression differs among patients [63]. Likewise, 
hypertensive patients may have diverse degrees of disease 
progression and different complications.

For NAFLD and HTN, a substantial proportion of the 
population is at risk of progressive disease, while the minority 
experience associated morbidity. In both disorders, the term 
“silent killer” is used, because in both conditions a relatively 
long-term “silent disease” may lead to serious complications 
and increased mortality. NAFLD is associated with a high rate 
of mortality from CVD, late-stage liver disease and HCC [64]. 
About one third of patients with early-stage NASH progress 
to cirrhosis over a period of 5-10 years. Among those who 
progress to NASH cirrhosis, approximately 25% develop 
the major complication of portal HTN within 3 years. HCC 
is described in the setting of NASH as well as of obesity 
and diabetes [65]. It has also been suggested that HCC may 
develop in “silent NAFLD” patients without cirrhosis [66]. The 
majority of deaths in NAFLD patients are related to CVD and 
cancer [67]. However, it remains unproven whether NASH 
carries excess CVD risk compared with simple steatosis [68]. 
NAFLD is associated with subclinical manifestations of 
atherosclerosis, including increased intima-media thickness, 
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endothelial dysfunction, arterial stiffness, impaired left 
ventricular function and coronary calcification [69]. HTN is 
responsible for 7.6 million deaths per year worldwide, 13.5% 
of the total, more than any other risk factor [70]. HTN is also 
responsible for approximately 41% of CVD-related deaths [61]. 
HTN is associated with over 50% of the cases of stroke and 
coronary heart disease. An association between CVD deaths 
and relatively low blood pressure was described, which further 
supports “the silent killer” paradigm of HTN [70].

Difficulties in developing treatments for NAFLD and 
HTN: from lifestyle modification to a combination 
drug strategy

There are challenges to optimizing the treatment strategies 
for both NAFLD and HTN to improve outcomes and prevent 
long-term complications. For NASH and HTN, an intervention 
targeting key environmental factors is required, and both 
require collaborative efforts from specialists in various medical 
fields as well as from primary care physicians.

There is no approved therapy for NASH at present [71]. The 
lack of a valid biomarker for both NAFLD and NASH makes 
it complex to monitor the effect of therapy on the disease. 
Hepatologists treating NASH can adopt some of the strategies 
developed over the last decades for HTN. These treatments 
are based on three major principles: (i) non-pharmacological 
management; (ii) a multi-drug combination regimen targeting 
different disease-relevant pathways; and (iii) a patient-tailored 
approach to therapy.
i.	 Guidelines for non-pharmacological management are 

fundamental in the treatment of HTN. Weight reduction, 
reduced salt intake, increased dietary intake of fresh fruits 
and vegetables, increased low-fat dairy intake, physical 
activity and a reduction in saturated fat and cholesterol 
intake, along with regular fish intake are recommended 
for a healthy lifestyle change [7]. Most studies and 
recommendations suggest an association between salt intake 
and HTN, in which decreased salt intake has been proven to 
be effective in decreasing HTN over the years. However, the 
new “salt controversy” suggests that even “simple” lifestyle 
modifications are not always straightforward [9,72,73]. An 
important finding was the J-shaped relationship between 
salt intake, mortality and CVD events. Likewise, lifestyle 
modifications should be an important part of any therapeutic 
program in NASH, irrespective of the disease stage [64]. 
Weight loss can improve the histological changes of NAFLD 
and can also alleviate NASH [74]. Dietary counseling and 
regular exercise must be a necessary treatment strategy in 
all patients.

ii.	 For HTN, effective implementation of a combination 
drug regimen, such as triple drug-based therapies, can 
control blood pressure in about 90% of patients [9]. HTN 
patients on multiple drugs have better blood pressure 
control than patients on monotherapy [75] and also have 
better protection against CVD. While the recommended 
combinations of therapies differ, they are all based on 

variations of any two renin-angiotensin system blockers, 
calcium-channel blockers, and diuretics. The use of 
β-blockers as a major agent is still recommended in Europe. 
A step-by-step guide on how to manage the increased 
RH has been developed  [7]. These guidelines are based 
on a large meta-analysis, which determined the effect of 
therapy on morbidity and mortality. The inferiority of 
low-dose thiazides was shown when compared with other 
drug classes and also compared with other diuretics [76]. 
An additional important factor in drug selection that may 
also be relevant for patients with NASH is the potential side 
effects; for example, higher-dose thiazides have fallen out of 
use because of their detrimental effects on potassium levels. 
The guidelines of the European Society of Hypertension, 
the American and International Society of Hypertension, 
and the Eighth Joint National Committee (JNC8) proposed 
the use of two drugs in combination to initiate therapy for 
a large proportion of patients [77]. The use of single-pill 
combinations of two antihypertensive agents is associated 
with considerably better adherence [78]. A recent study 
summarizing 68 randomized controlled HTN trials showed 
that lowering blood pressure significantly reduced major 
CVD outcomes independently of the agents used [79]. A 
significant risk reduction was observed in all stages of HTN.

iii.	Optimizing drug therapy for HTN needs to be done 
in a patient-tailored way. The effect of genetic loci and 
phenotypic features, including ethnicity, on a patient’s 
response to therapy should be considered. The patterns 
of response to treatment and the rate of complications in 
patients with HTN differ between White, Hispanic and 
African American patients [24]. All guidelines make an 
effort to differentiate the recommendations on the basis 
of age and ethnic group when they propose the use of 
combination therapies. Drug selection, however, varies 
among the different guidelines [80]. Patients with RH are 
a subgroup at high risk and a treatment regimen for these 
patients is being developed [81]. Both drug selection and 
treatment targets need to be patient-tailored in HTN. 
Previous guidelines suggested a target of 130/80 mmHg or 
lower for all patients with diabetes or chronic renal failure. 
Because of insufficient data, the targets were increased 
to 140/85 mmHg and 140/90 mmHg, respectively [82]. 
For patients over 60 years of age, the treatment threshold 
increases to 150/90 mmHg.

Like HTN, the treatment goals in patients with NAFLD 
should vary depending on the stage of the disease, the potential 
risk of progression and any comorbid diseases [64]. Patients 
with NASH should be targeted for treatment, especially if they 
have concomitant fibrosis, because they are more likely to 
develop cirrhosis and HCC than those without fibrosis [64].

Several of the drugs used for the treatment of HTN were 
shown to exert some beneficial effect in pre-clinical and small 
proof-of-concept clinical trials. These include losartan  [83], 
pioglitazone in combination with candesartan  [84], 
combined ursodeoxycholic acid and angiotensin-II type 1 
receptor blocker [85], angiotensin-receptor blockers [86], 
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telmisartan  [87],  angiotensin II type 1 receptor blocker, and 
irbesartan [88].

The therapeutic methods being developed for NASH 
were recently reviewed [89]. Hepatic fat accumulation 
and metabolic stress are major targets for therapy using 
peroxisome proliferator-activator receptor agonists (e.g., 
pioglitazone, elafibranor, saroglitazar). Other drugs target 
the gut microbiome or the gut immune system [90]. Drugs 
targeting the bile acid-farnesoid X receptor axis (obeticholic 
acid), inhibitors of de novo lipogenesis (aramchol), incretins 
(liraglutide) and fibroblast growth factor (FGF)-21 and 
FGF-19 analogs are in various stages of development [89]. 
Another approach is targeting the inflammation underlying 
the disease using antioxidants (vitamin E), medications with 
a target in the TNF-α pathway (emricasan, pentoxifylline) and 
immune modulators (amlexanox, cenicriviroc, anti-CD3, anti-
TNF [90,91]). Antifibrotics (simtuzumab and GR-MD-02) 
are also being tested with the aim of reversing the fibrosis 
process. Metformin revealed no biochemical or histological 
improvement and is not recommended [92]. Bariatric surgery 
is recommended for morbidly obese patients and leads to 
a significant improvement in liver histology and metabolic 
syndrome [3,93].

Several controlled trials have shown some benefits in patients 
with NASH. The PIVENS trial showed that vitamin E was 
superior to placebo for the treatment of NASH in adults without 
diabetes [94]; in the Flint trial, obeticholic acid improved the 
histological features of NASH [95]; the LEAN trial showed 
liraglutide to be safe and associated with histological resolution 
of several parameters of NASH [96]; in the Golden trial, 
GFT505, a dual agonist of the PPARα and PPARδ isoforms, 
showed some benefits in subsets of patients [97].

The potential risks of using some of these drugs may 
prohibit their long-term use in large populations of patients 
with NAFLD: pioglitazone is associated with weight gain [98]; 
obeticholic acid may lead to hyperlipidemia in a significant 
proportion of patients; and vitamin E is associated with 
potential long-term risks [4].

Development of a multi-step, patient-tailored drug 
combination treatment strategy for NASH

The best treatment for NASH is based on the three principles 
described above, combining a non-pharmacological approach 
with patient-tailored multi-drug combination therapy (Fig. 1). 
The drug combination needs to target inflammatory as well as 
fibrosis pathways. While resolution of inflammation may also 
contribute to the inhibition of fibrogenesis, direct antifibrotic 
drugs are required for reversal of existing liver damage.

Developing the personalized treatment protocols needed 
in a patient-tailored way is based on genomic, proteomic, 
metabolomic, lipidomic, and microbiome studies (Fig. 2). 
Identifying those patients left in the stage of simple steatosis, a 
benign condition, compared to those at risk for developing liver 
inflammation, fibrosis, cirrhosis and HCC, is essential [45].

Analyzing the proteome of the liver mitochondria revealed a 
platform that distinguished NASH [99,100]. Over 550 proteins 
were identified in the NAFLD proteome, and several were 
found to be significantly up- and downregulated in NASH [99]. 
These include apolipoprotein E, insulin-like growth factor-
binding protein 3, vitamin D-binding protein and lymphocyte 
cytosolic protein. These proteins are involved in fatty acid 
β-oxidation processes, lipid metabolic processes, cell-cycle 
arrest, cell polarity maintenance, and adenosine triphosphate/
sex hormone metabolic processes [100]. Liver samples obtained 
from diabetic and non-diabetic morbidly obese subjects 
showed a decreased abundance of mitochondrial enzymes, 
proteins involved in methionine metabolism and a reduction 
in the oxidative stress response. Patients with T2DM exhibited 
decreased levels of glutathione, the antioxidant byproduct of 
methionine metabolism, via the transsulfuration pathway and 
a higher level of protein and lipid oxidative damage, along with 
alterations in detoxifying enzymes, carbohydrate metabolism, 
proteasome subunits and retinoic acid synthesis.

For metabolomics, proteins implicated in transportation, 
metabolic pathways, acute phase reactions, anti-inflammatory 
effects, the extracellular matrix, and the immune system 
are explored [45,101]. Profiling of metabolic products 

Step A: Non-pharmacological recommendations for NASH

•  Weight reduction
•  Physical activity
•  Reduction in dietary saturated fat and cholesterol
•  Increase in dietary fresh fruit and vegetable intake
•  Increase in dietary low-fat dairy intake
•  Moderate alcohol intake
•  Regular �sh intake

Step B: Anti-in ammatory / immune modulatory agent(s)

•A combination of several anti-in ammatory drugs A + B + C

Step C: An anti-�brotic therapy(ies)

•A combination of several anti-�brotic drugs D + E + F

Figure 1 A schematic stepwise approach for the treatment of 
nonalcoholic steatohepatitis (NASH)

Genome Proteome Lipidome

Metabolome Microbiome

Patient’s NASH Pro�le

Selection of the “ideal patient-tailored cocktail”:
Anti-in�ammatory/ immune modulatory + anti�brotic

Figure 2 Selection of the ideal anti-inflammatory/immune modulatory 
and antifibrotic drug combination for patients with nonalcoholic 
steatohepatitis (NASH) based on a patient-tailored regimen
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using nuclear magnetic resonance spectroscopy and mass 
spectrometry combined with statistical modeling and top-
down systems biology identified metabolic signatures in 
NAFLD [102]. A small-molecular screen of human liver 
tissue showed that hydroquinone and nicotinic acid were 
inversely correlated with histological NAFLD severity [103]. 
γ-Glutamyl dipeptides may differentiate between NASH and 
simple steatosis. A non-targeted metabolomics approach to 
the plasma from morbidly obese patients undergoing bariatric 
surgery detected differences between patients with or without 
NAFLD. Accumulation of lipids in hepatocytes is linked with 
α-ketoglutarate, decreased β-oxidation energy production, 
reduced liver function, and altered glucose metabolism [104]. 
Plasma α-ketoglutarate levels distinguish between those with 
or without NAFLD. Assessment of the bile acid metabolome 
indicated a higher total serum bile acid concentration in 
NASH. Increased taurine- and glycine-conjugated primary and 
secondary bile acids were identified [105]. The metabolome 
is also able to identify patients likely to respond to therapy 
such as vitamin E. At baseline, phenyl-propionic acid and 
indole-propionic acid levels were directly connected with a 
subsequent histologic response to vitamin E treatment, while 
γ-carboxyethylhydroxychroman levels were inversely related to 
the response. The end-of-treatment levels of γ-glutamyl leucine 
and γ-glutamyl valine were lower in vitamin E respondents.

Lipidomic studies characterized the potential relationships 
between lipotoxicity, inflammation, oxidative stress, and 
cellular function [106]. Lipidomic data from the portal 
and systemic blood defined a NASH signature [107]. 
Increased concentrations of several glycerophosphocholines, 
glycerophosphoethanolamines, glycerophosphoinositols, 
glycerophosphoglycerols, lyso-glycerophosphocholines and 
ceramides were detected in the systemic circulation of NASH 
subjects. Analysis of lipids from the portal system at the time 
of surgery revealed limited lipid alterations compared with the 
systemic circulation, but glycerophosphoethanolamines (PE), 
and, glycerophosphoglycerols (PG) classes were significantly 
increased in NASH subjects [107]. Lipid species may also 
serve as markers of advanced liver disease. An increase in 
diacylglycerols was demonstrated in NAFLD, supporting their 
role in the progression of NAFLD and liver fibrosis  [108]. 
Lipid-modifying enzymes used in converting saturated fatty 
acids to monounsaturated fatty acids are relevant for the 
development of HCC [109-111]. Increased ratios of long-chain 
n6-polyunsaturated fatty acids over n3-polyunsaturated fatty 
acids are a risk factor for both NASH and HCC [112,113].

Dysbiosis and the gut-microbiota-liver network determine 
the phenotype in patients with NAFLD [114]. The transfer of 
gut microbiota from lean and obese individuals induced the 
metabolic features of the donor in the recipients. Bidirectional 
interactions of the gut microbiota, including with food, bile and 
the intestinal epithelium, are associated with the progression 
from steatosis to steatohepatitis, fibrosis, and cancer [115]. 
Caloric extraction from the diet, intestinal epithelial 
damage and entry of bacterial components into the portal 
circulation are important contributors to innate activation, 
liver inflammation and fibrosis [116]. Gut microbiota-linked 

compounds, including short-chain fatty acids, bile acids, 
choline metabolites, indole derivatives, vitamins, polyamines, 
lipids, neurotransmitters, neuroactive compounds, and 
hypothalamic–pituitary–adrenal axis hormones, are additional 
factors [117]. Serum lipid levels of phospholipids, free fatty 
acids, polyunsaturated fatty acids, especially eicosapentaenoic 
acid, arachidonic acid, and docosahexaenoic acid, correlate with 
specific fecal flora. Cytokines, amino acids, vitamins, and fatty 
acid metabolism also correspond with gut microbiota [117].

The use of a combination of proteome- and/or metabolome- 
and/or lipidome- and/or microbiome-based data can serve to 
tailor selected therapies to the appropriate patients in order to 
increase response rates and avoid exposing patients with low 
response potential to unnecessary side effects.

Concluding remarks

Although an effort has been made over the last two decades 
to understand the natural history and pathogenesis of NAFLD 
and NASH and to develop noninvasive diagnostic measures, 
there is still no approved therapy for NASH [4]. Moreover, 
it appears that the therapies developed to date are unlikely 
to provide a “one-pill” type of treatment for NASH. The 
development of patient-tailored “HTN-like” therapy protocols 
is suggested as a way to offer therapy to patients with different 
risk levels and this should be our goal for the near future.
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