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Adipokines and the role of visceral adipose tissue in inflammatory 
bowel disease

Thomas Karrasch, Andreas Schaeffler
Giessen University Hospital, Germany

Recently, adipocytes have been recognized as actively participating in local and systemic immune 
responses via the secretion of peptides detectable in relevant levels in the systemic circulation, the 
so-called “adipo(cyto)kines”. Multiple studies appearing within the last 10-15 years have focused on 
the possible impact of adipose tissue depots on inflammatory bowel disease (IBD). Consequently, 
various hypotheses regarding the role of different adipokines in inflammatory diseases in general 
and in intestinal inflammatory processes in particular have been developed and have been further 
refined in recent years. After a focused summary of the data reported concerning the impact of 
visceral adipose tissue on IBD, such as Crohn’s disease and ulcerative colitis, our review focuses 
on recent developments indicating that adipocytes as part of the innate immune system actively 
participate in antimicrobial host defenses in the context of intestinal bacterial translocation, which 
are of utmost importance for the homeostasis of the whole organism. Modulators of adipose 
tissue function and regulators of adipokine secretion, as well as modifiers of adipocytic pattern 
recognition molecules, might represent future potential drug targets in IBD.
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Introduction

Recently, adipocytes have been recognized to actively 
participate in systemic immune responses via the secretion 
of peptides detectable in relevant levels in the systemic 
circulation, the so-called “adipo(cyto)kines” [1-3]. Multiple 
original studies and review articles appearing within the last 
10-15  years have focused on the possible impact of adipose 
tissue depots on inflammatory bowel disease (IBD). A recent 
search of the PubMed database (in April 2016) using the 
search terms “inflammatory bowel disease AND fat (adipose) 
tissue” resulted in 316 items. Publications in this field are 
constantly growing in number and increasingly concentrate 
on adipokines. The search terms “inflammatory bowel disease 
AND adipokines” returned 132 publications. Leptin is the 

most prominent adipokine in the field of IBD research, as 
83 of these 132 publications were related to leptin, followed 
by adiponectin, resistin, visfatin and others. Because of the 
growing body of data, the number of review articles in this 
field is also increasing, with a total number of 45 review articles 
returned when the search terms “review AND inflammatory 
bowel disease AND adipose tissue” were used. Among these 
45 articles, 15 focus on adipokines/secreted factors, 9 on 
mesenchymal stem cells/fibrosis, 4 on obesity/muscle/exercise, 
3 on peroxisome proliferator-activated receptor γ (PPARγ), 
3 on the innate immunity of adipocytes, 2 on metabolism/fatty 
acids, 2 on neurotransmitters/neuropeptides, and 7 on other 
or mixed topics.

Various hypotheses regarding the role of different 
adipokines in inflammatory diseases in general and in intestinal 
inflammatory processes in particular have been developed and 
have been further refined in recent years. It is not the intent 
of this review to reiterate these developments in detail. Rather, 
after a focused summary of the data reported on the impact of 
visceral adipose tissue (VAT) on IBD, such as Crohn’s disease 
and ulcerative colitis, our manuscript will focus on recent 
developments indicating that, in the context of intestinal 
bacterial translocation, adipocytes actively participate as part 
of the innate immune system in antimicrobial host defenses, 
which are of utmost importance for the homeostasis of the 
whole organism.

Interestingly, inflammatory visceral fat hypertrophy (also 
named “creeping fat”) is indicative for Crohn’s disease to an 
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extent that it has been proposed as a useful diagnostic marker 
in the differential diagnosis of IBD from other intestinal 
inflammations such as intestinal tuberculosis [4]. In computed 
tomography scans, the increase in submucosal fat in patients 
with Crohn’s disease of longer duration leads to a characteristic 
“fat halo sign” [5].

Early studies described an inflammatory reaction 
of hypertrophic mesenteric adipose tissue (MAT) in 
patients with Crohn’s disease, characterized by increased 
concentrations of PPARγ and tumor necrosis factor α 
(TNFα) within the mesenteric fat depot [6]. Similar results 
were found in experimental 2,4,6-trinitrobenzenesulfonic 
acid (TNBS)-induced colitis in mice [7], while infliximab 
treatment restored MAT PPARγ expression to baseline 
in these mice  [8]. Interestingly, the angiotensin II type  1 
receptor blocker and PPARγ agonist telmisartan ameliorated 
spontaneous colitis in interleukin-10-deficient (IL-10-/-) 
mice, restoring VAT morphology and adipokine secretion 
to a non-colitic phenotype [9]. Notably, mice deficient in 
Toll-like receptor 9 (TLR9) signaling (TLR9-/-), resistant to 
chronic dextran sulfate sodium (DSS)-induced colitis, exhibit 
an altered adipokine expression profile in VAT compared to 
wild-type mice [10].

Remarkably, PPARγ is the key transcriptional regulator in 
the terminal differentiation of adipocytes from mesenchymal 
stem cells [11,12]. These data imply an intricate relationship 
between intestinal inflammation and adjacent VAT, more than 
merely being a passive “bystander”.

Obesity and IBD: bystanders, mutual friends, or enemies?

Generally, obesity has been postulated to contribute to 
the onset and progression of various autoimmune diseases 
in humans [13]. While earlier reports indicated that the 
prevalence of obesity was lower in patients suffering from 
IBD than in the general population [14,15], the overall 
incidence of obesity in these patients has recently been 
increasing and is currently estimated to be around 25-
30%, similar to the rate in the general population [16,17]. 
Interestingly, bariatric surgery has been observed to improve 
intestinal inflammation in patients with IBD [18], although 
other reports caution against a potentially deleterious 
effect [19,20]. While earlier reports hinted at a potentially 
worse disease course in obese as compared to normal-
weight IBD patients [15,21], other authors found less severe 
disease in obese patients [22]. Diet-induced obesity worsens 
TNBS-induced experimental colitis in mice [23] as well as 
spontaneous intestinal inflammation in multidrug resistance 
protein 1a deficient mice [24]. In IBD patients, however, 
the large “IBD in EPIC Study”, which included more than 
300,000 participants, found no association between IBD 
and obesity, measured by body mass index (BMI) [25]. It 
should be noted that BMI is only a crude index of obesity, 
and this may be partly responsible for the lack of association 
in this large study. In summary, the impact of obesity on IBD 
remains to be clarified.

Do drugs that induce weight loss in obese patients 
[26,27] impact on the incidence, prevalence and/or 
clinical course of IBD? No data in this regard are available 
on sympathomimetic drugs approved for short-term 
use (amfepramone, benzphetamine, diethylpropion, 
phendimetrazine, phentermine, ephedrine, caffeine). 
Interestingly, bupropion, an antidepressant used in the 
pharmacotherapy of obesity, has shown beneficial effects on 
intestinal ischemia/reperfusion injury in rats [28], while the 
opioid antagonist naltrexone effectively reduced intestinal 
inflammation in human Crohn’s disease, as well as in rodent 
models of colitis [29-31]. However, these observations 
were mostly short-term effects, while the weight-lowering 
effects of these compounds are expected with longer-term 
use. Thus, reduced intestinal inflammation in these models 
is not likely to be causally linked to weight loss or reduced 
adipocyte numbers.

For long-term treatment of obesity aimed at inducing weight 
loss, orlistat, lorcaserin and the combination phentermine/
topiramate have been approved [26,27]; however, no data are 
available regarding the impact of these compounds on IBD. 
Interestingly, glucagon-like peptide-2 (GLP-2) had beneficial 
effects in rodent enteritis models [32,33], and inhibition of 
the GLP-diminishing enzyme dipeptidyl peptidase 4 had 
beneficial effects in acute DSS-induced colitis in mice [34]. No 
data are available on GLP-1-analogs in autoimmune intestinal 
inflammation.

Importantly, metformin has been demonstrated to inhibit 
TNFα-induced proinflammatory cytokine induction in colonic 
epithelial cells via nuclear factor kappa-light-chain-enhancer 
of activated B cells (NF-κB) pathway inhibition in vitro [35]. 
Metformin treatment, via signal transducer and activator of 
transcription 3/IL-17 inhibition, ameliorated murine acute 
DSS-induced colitis as well as chronic colitis in IL-10-/- mice 
[35,36]. Additionally, metformin treatment reduced colitis-
associated tumorigenesis in rats and mice [35,37]. However, no 
data are available on metformin treatment in patients suffering 
from IBD.

There is a wealth of data proving the beneficial effect 
of PPARγ agonists (thiazolidinediones, “glitazones”) 
in IBD. PPARγ receptors were originally described in 
adipose tissue, and agonistic compounds have long been 
used as insulin-sensitizing, antidiabetic agents in patients 
[38,39]. Observational studies did not find a significant 
reduction in ulcerative colitis flares in patients receiving 
thiazolidinediones as compared to other oral antidiabetic 
drugs [40]; however, the systemic and local administration 
of rosiglitazone had beneficial effects in ulcerative colitis 
patients [41-43].

In summary, several insulin-sensitizing and weight-
lowering drugs have pleiotropic, beneficial effects on 
autoimmune intestinal inflammation (Table 1). However, data 
in the literature on the impact of obesity in general on IBD are 
contradictory. A closer look at possible underlying mechanisms 
might shed some light on these discrepancies. How adipocytes, 
as key players in obesity, might impact on the intestine remains 
to be elucidated.



Annals of Gastroenterology 29 

426 T. Karrasch and A. Schaeffler

Adipocytes in IBD: is it all about adipokines?

Historically seen as passive bystanders, adipocytes have 
increasingly been recognized as active participants in a variety 
of physiological reactions, including the immune system, via 
the expression and secretion of multiple hormone-like factors 
with auto-  and paracrine effects, the so-called adipokines. 
Various different adipokines with pleiotropic roles have been 

described in this regard, many of which are found in significant 
concentrations in the systemic circulation [1-3,44-46]. These 
adipokines show correlations with the activity of a variety of 
autoimmune as well as infectious diseases [13,47]. Given the 
ill-defined role of obesity in IBD, it was an obvious necessity 
to investigate the role of defined adipokines and the potential 
diagnostic and pathophysiological value of systemic serum 
levels of adipokines in patients suffering from IBD, and to 

Table 1 Summary of studies investigating the efficacy of antidiabetic and weight-lowering drugs in intestinal inflammation

Drug Organism Model Effect on colitis Net effect Reference

Metformin Mice Acute DSS colitis ↓ ↓ [35]

Metformin Mice Spontaneous colitis in IL-10-/- mice ↓ [35]

Metformin Mice Acute DSS colitis ↓ [36]

Rosiglitazone Human Ulcerative colitis ↓ ↓ [41]

Rosiglitazone Human Ulcerative colitis ↓ [42]

Rosiglitazone enema Human Ulcerative colitis ↓ [43]

Rosiglitazone Rat Acute DSS colitis ↓ [154,155]

Rosiglitazone Rat Acute DSS colitis ↓ [156]

Rosiglitazone Rat Acute TNBS colitis ↓ [157]

Rosiglitazone Rat Acute TNBS colitis ↓ [158]

Rosiglitazone Rat Chronic TNBS colitis ↓ [159]

Rosiglitazone Mice Acute DSS colitis ↑ [160]

Rosiglitazone Mice Acute DSS colitis ↓ [161]

Rosiglitazone Mice Acute DSS colitis ↓ [162]

Rosiglitazone Mice Acute TNBS colitis ↓ [163]

Rosiglitazone Mice Acute TNBS colitis ↓ [164]

Rosiglitazone Mice Spontaneous colitis in IL-10-/- mice ↓ [165]

Pioglitazone Mice Acute DSS colitis ↓ [166]

Pioglitazone Mice Acute DSS colitis ↓ [167]

Pioglitazone Mice Acute DSS colitis ↓ [162]

Netoglitazone Mice Acute DSS colitis ↓ [166]

Troglitazone Rat Acute DSS colitis ↓ [154,155]

Troglitazone Rat Acute DSS colitis ↓ [168]

Troglitazone Mice Acute DSS colitis ↓ [162]

Bupropion Rat Intestinal ischemia/reperfusion injury ↓ ↓ [28]

Naltrexone Human Crohn’s disease ↓ ↓ [29]

Naltrexone Human Crohn’s disease ↓ [31]

Naltrexone Mice Acute DSS colitis ↓ [30]

GLP-2 HLA-B27 rats Spontaneous small bowel enteritis ↓ ↓ [33]

GLP-2 Mice Indomethacin-induced small bowel enteritis ↓ [32]

DPP-IV-Inhibitors Mice Acute DSS colitis ↓ ↓ [34]
Effect on colitis: ↓ amelioration; ↑ aggravation
GLP-2, glucagon-like peptide-2; DPP-IV, dipeptidyl peptidase 4; DSS, dextran sulfate sodium; TNBS, 2,4,6-trinitrobenzenesulfonic acid; IL-10-/- mice, interleukin-10 
deficient mice; HLA-B27 rats, animals derived from Fisher (F344) rat zygotes microinjected with human HLA-B27 and beta2-microglobulin genes inducing 
spontaneous chronic gastrointestinal inflammation
Data are organized according to pharmaceutical substance groups (column 1), and within groups according to model organism (human, rat, mice – column 2) 
followed by model of intestinal inflammation (column 3)
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correlate these findings with observations made in different 
mouse models of (autoimmune) intestinal inflammation.

One of the first adipokines to be investigated in relation 
to intestinal inflammation was leptin, in 2002. Based on the 
observation that leptin-deficient animals, as well as humans, 
exhibit defective T-cell-function, Siegmund et al sought to 
determine whether experimentally induced colitis (DSS- and 
TNBS-induced colitis models) was affected in leptin-deficient 
(ob/ob) mice. They found that intestinal inflammation in 
both experimentally induced colitis models was significantly 
attenuated in ob/ob mice [48]. These results were mirrored by a 
markedly reduced inflammatory activity in oxazolone-induced 
colitis in mice and in a mouse model of infectious diarrhea 
(Clostridium difficile toxin A-induced enteritis) [49,50]. Similar 
observations were made regarding the DSS-induced colitis 
model, the Clostridium difficile toxin A-induced enteritis model, 
and the infectious Clostridium difficile-induced colitis model in 
both leptin-receptor-deficient (db/db) mice [50-52] and leptin 
receptor-mutant mice [52]. On the other hand, intrarectal leptin 
administration induced mucosal inflammation in mice [53]. 
Pathophysiologically, leptin proved to be an important inducer 
of various proinflammatory cytokines and played a regulatory 
role in T cell polarization [49].

Remarkably, no differences were demonstrated in the 
CD4+CD45RBhigh transfer model of colitis [54,55] when cells 
from ob/ob mice were transferred, indicating that leptin’s impact 
on colitis is not mediated by T cell secretion. Rather, when 
CD4+CD45RBhigh cells of db/db mice were used in this transfer 
model of colitis, the receptor animals showed a delayed colitis 

onset, indicating that leptin does act on T  cells under these 
circumstances. It is noteworthy that no differences were noted 
in the course of spontaneous colitis in ob/ob x IL-10-/- mice 
compared to wild-type (wt)/wt x IL-10-/-  mice, indicating 
that leptin does not impact on intestinal inflammation in this 
model. Table 2 summarizes the results of experimental animal 
studies that investigated leptin’s role in different models of 
intestinal inflammation.

Interestingly, systemic leptin serum levels in mice seem 
to be reduced in different models of colitis [56-59], while 
other groups found increased versus unchanged serum levels 
in other colitis models in rats [8,60]. Studies investigating 
systemic leptin serum levels in patients suffering from IBD 
reported contradictory results, summarized in Table 4; while 
some groups found increased leptin concentrations in the 
systemic circulation in active IBD [61,62], others reported 
reduced [63-66] or unchanged systemic leptin levels [65,67-70], 
in part depending on the disease subgroup (Crohn’s disease 
versus ulcerative colitis). However, separate disease subgroups 
and different patient cohorts were not sufficient to explain 
the varying results. Another potential source of heterogeneity 
between studies is the different treatment status of the IBD 
patients who were included; however, data from truly treatment 
naïve patients are sparse.

It has been demonstrated that adipocytes are the main 
contributors to systemic leptin serum levels [71,72]. However, 
keeping in mind that data in the literature on the impact of 
obesity in general on IBD are contradictory, generalized fat 
hypertrophy might not completely reflect the changes relevant 

Table 2 Summary of experimental animal studies investigating the role of leptin and leptin receptor signaling in intestinal inflammation

Genotype Organism Model Effect on colitis Net effect Reference

ob/ob Mouse Acute DSS colitis ↓ ↓ [48]

ob/ob Mouse Chronic DSS colitis ↓ [48]

ob/ob Mouse TNBS colitis ↓ [48]

ob/ob Mouse Oxazolone-induced colitis ↓ [49]

ob/ob Mouse Clostridium difficile toxin A-induced enteritis ↓ [50]

ob/ob Mouse CD4+CD45RBhigh transfer model of colitis ↔ [54]

ob/ob Mouse IL-10-/- ↔ [55]

db/db Mouse Acute DSS colitis ↓ ↓ [51]

db/db Mouse CD4+CD45RBhigh transfer model of colitis ↓ [169]

db/db Mouse Clostridium difficile toxin A-induced enteritis ↓ [50] 

db/db Mouse Clostridium difficile-induced colitis ↓ [52]

Leptin receptor (LEPR) gene 
mutant for Y1138 (s/s mice)

Mouse Acute DSS colitis (↓) ↓ [51]

Leptin receptor (LEPR) gene 
mutant for Y1138 (s/s mice)

Mouse Clostridium difficile-induced colitis ↓ [52]

wt/wt Mouse Intrarectal leptin administration ↑ ↑ [53]
Effect on colitis: ↓ amelioration; ↑ aggravation; ↔ no change
ob/ob mice, leptin deficient mice; db/db mice, leptin-receptor deficient mice; wt/wt mice, wild-type mice; DSS, dextran sulfate sodium; TNBS, 
2,4,6-trinitrobenzenesulfonic acid; CD4+CD45RBhigh transfer model of colitis, adaptive transfer of CD4+CD45RBhigh T cells (naïve T cells) from healthy donor mice 
into syngeneic recipients that lack T and B cells, inducing pancolitis and small bowel inflammation; IL-10-/- mice, interleukin-10 deficient mice
Data are organized according to genotypes (column 1), and within genotypes according to the model of intestinal inflammation (column 3)
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in IBD in humans. Rather, the observed localized hypertrophy 
of fat tissue, particularly MAT, which is accompanied by 
proinflammatory changes within these fat depots [6], hints at 
possible paracrine effects of adipokines produced and secreted 
by mesenteric adipocytes. Remarkably, all studies investigating 
the leptin secretion/mRNA induction in MAT/VAT in IBD 
patients found unequivocally increased levels [23,73-75]. These 
results are mirrored by studies in MAT/VAT in rodent models 
of colitis [7,10,76]. In summary, leptin produced by MAT/VAT 
is upregulated and seems to act in a paracrine manner on the 
intestine as a proinflammatory mediator in patients suffering 
from IBD as well as in rodent models of colitis.

One of the first proteins demonstrated to be synthesized and 
secreted in large quantities almost exclusively by adipocytes, 
and as such one of the first “adipokines”, was adipocyte 
complement-related protein of 30  kDa (Acrp30), later 
termed “adiponectin” in 1995 [77]. Structurally, adiponectin 
has a globular head domain similar to complement factor 
C1q, as well as a collagen-like domain, and forms different 
higher-molecular secondary and tertiary structures. It was 
demonstrated to be detectable in significant quantities in the 
systemic circulation [77].

Studies by Nishihara and colleagues in 2006 demonstrated 
that acute DSS-induced colitis was significantly aggravated 
in adiponectin-deficient (APN-/-) mice, indicating that 
adiponectin had a protective effects on colitis in this model [78]. 
Other studies were able to reproduce these results [79,80]. 
Surprisingly, Fayad et al reported in 2007 that both acute 

DSS-induced colitis and acute TNBS-induced colitis were 
ameliorated in APN-/-  mice [81,82], whereas Nishihara had 
found that TNBS-induced colitis remained unchanged in 
APN-/- mice [78]. Although differences in the concentration of 
DSS/TNBS chosen in these models have been held accountable 
for some of the observed inconsistencies, the impact of 
adiponectin on acute intestinal inflammation in mouse models 
remains elusive. No impact of adiponectin deficiency could be 
demonstrated on acute irradiation-induced small-intestinal 
damage [83], nor on mouse models of chronic autoimmune 
intestinal inflammation (CD4+CD45RBhigh induced colitis 
model, APN-/- x IL-10-/-) [84,85]. Table 3 summarizes the results 
of experimental animal studies that investigated adiponectin’s 
role in different models of intestinal inflammation.

Furthermore, the data regarding systemic serum levels 
of adiponectin in human IBD are also quite heterogeneous 
(Table  4). While some authors reported systemic serum 
levels to be unchanged in active Crohn’s disease and 
ulcerative colitis [63,65], others found reduced [67,68] or 
increased [64] adiponectin concentrations in the systemic 
circulation. Remarkably, as with the observations concerning 
leptin discussed above, all studies investigating the adiponectin 
secretion/mRNA induction in MAT/VAT in IBD patients 
found unequivocally increased levels [23,73,74,86]. However, 
in contrast to the data for leptin in animal models, these 
results were not completely mirrored by rodent models of 
colitis, where the data relating to MAT/VAT are contradictory 
(adiponectin levels decreased [87] versus increased [7,76]). 
These observations do implicate adiponectin, like leptin, as 
an important local mediator produced by mesenteric/visceral 
adipocytes and potentially impacting on the intestine in a 
paracrine manner in patients suffering from IBD, as well as in 
rodent models of colitis. However, as opposed to the clearly 
proinflammatory role of leptin, the exact impact of adiponectin 
on inflammation (pro-/anti-inflammatory) remains elusive.

Multiple other adipokines have been investigated in human 
autoimmune intestinal inflammation and in various rodent 
models of colitis. For example, systemic chemerin levels are 
elevated in experimental DSS-induced colitis in mice and 
intraperitoneal chemerin treatment exacerbates the disease, 
while treatment with anti-chemerin antibodies ameliorates 
colitis in this model [88,89]. However, data from serum 
samples of patients with Crohn’s disease or ulcerative colitis 
are contradictory [63,90]. Systemic resistin levels seem to be 
increased in patients with active IBD [63,64,67,91]; however, 
studies specifically targeting resistin expression/secretion 
in VAT in these patients found conflicting results [23,74]. 
Visfatin serum levels were increased in IBD patients [63,67,92], 
but this result could not be reproduced in rodent models of 
colitis [10,93]. The new adipokine C1q/TNF-related protein-3 
(CTRP-3) is synthesized and secreted by MAT and ameliorates 
lipopolysaccharide (LPS)-induced IL-8  secretion, while 
reducing the basal expression of transforming growth factor β, 
connective tissue growth factor and collagen I in Crohn’s 
disease colonic lamina propria fibroblasts [94]. However, no 
difference was observed in VAT CTRP-3 mRNA expression 
between chronic DSS-induced colitis in mice compared to 
control mice [10]. Finally, there are reports that systemic 

Table 3 Summary of experimental animal studies investigating the 
role of adiponectin in intestinal inflammation

Genotype Organism Model Effect 
on 

colitis

Net 
effect

Reference

APN-/- Mouse Acute DSS colitis ↑ ?? [78]

APN-/- Mouse Acute DSS colitis ↑ [79]

APN-/- Mouse Acute DSS colitis ↑ [80]

APN-/- Mouse Acute DSS colitis ↓ [82]

APN-/- Mouse Acute DSS colitis ↓ [81]

APN-/- Mouse TNBS colitis ↔ ?? [78]

APN-/- Mouse TNBS colitis ↓ [82]

APN-/- Mouse Irradiation-induced 
damage

↔ ↔ [83]

APN-/- Mouse CD4+CD45RBhigh 

induced colitis
↔ ↔ [84]

APN-/- Mouse IL-10-/- ↔ ↔ [85]
Effect on colitis: ↓ amelioration; ↑ aggravation; ↔ no change; ?? data 
contradictory
APN-/-, adiponectin deficient mice; DSS, dextran sulfate sodium; TNBS, 
2,4,6-trinitrobenzenesulfonic acid; CD4+CD45RBhigh transfer model of colitis, 
adaptive transfer of CD4+CD45RBhigh T cells (naïve T cells) from healthy 
wild-type mice into syngeneic recipients that lack T and B cells, inducing 
pancolitis and small bowel inflammation; IL-10-/- mice, interleukin-10 
deficient mice
Data are organized according to genotypes (column 1), and within 
genotypes according to the model of intestinal inflammation (column 3)
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Table 4 Summary of observational studies investigating visceral adipose tissue adipokine expression, secretion and/or systemic levels in 
autoimmune intestinal inflammation

Adipokine Organism Sample Disease/Model Effect Net effect Reference

Adiponectin Human Serum UC active/CD active ↔ ?? [63]

UC/CD active+inactive ↓ [67]

UC/CD active+inactive ↑ (sign. for UC) [64]

CD active ↓ [68]

Human/children Serum UC active/CD active ↔ [65]

Chemerin Human UC active/CD active ↔ ?? [63]

UC/CD active+inactive ↑ [90]

Ghrelin Human UC/CD active+inactive ↑ ↑ [64]

Leptin Human Serum UC active/CD active ↓ ?? [63]

UC active ↑ [61]

UC/CD active+inactive ↔ [67]

UC/CD active+inactive ↓ (sign. for UC) [64]

UC active ↑ [62]

CD active ↔ [68]

CD active+inactive ↔ [69]

Human/children  Serum UC active ↓ [65]

CD active ↔ [65]

UC active+CD active ↓ [66]

CD/UC active+inactive ↔ [70]

Omentin-1 Human Serum UC active/CD active ↓ ↓ [95]

RBP-4 Human Serum UC/CD active+inactive ↑ ↑ [67]

Resistin Human Serum UC active/CD active ↑ ↑ [63]

UC active/CD active ↑ [67]

UC active/CD active ↑ [91]

UC/CD active+inactive ↑ [64]

Visfatin Human Serum UC active ↑ ↑ [92]

UC active/CD active ↑ [63]

UC active ↑ [67]

Adiponectin Human VAT secretion UC active/CD active ↑ ↑ [23]

UC active/CD active ↑ [73]

MAT secretion CD active ↑ [86]

CD active ↑ [74]

MAT mRNA CD active ↑ [86]

Leptin Human VAT secretion UC active ↑ ↑ [23]

CD active ↔ [23]

UC active/CD active ↑ [73]

MAT secretion CD active ↑ [74]

MAT mRNA UC/CD active+inactive ↑ [75]

Resistin Human VAT secretion UC active ↔ ?? [23]

CD active ↓ [23]

MAT secretion CD active ↑ [74]

(Contd...)
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serum levels of retinol-binding protein 4 [67] and ghrelin [64] 
are increased, while omentin-1 [95] is reduced in IBD patients. 
Table  4 summarizes the observational studies reported to 
date that investigated VAT expression, secretion and systemic 
adipokine levels in human IBD as well as in rodent models of 
intestinal inflammation.

Abdominal fat depots in IBD

Interestingly, diet-induced increased VAT mass in mice 
worsens the course of experimental TNBS-induced colitis, 
possibly via reduced intestinal epithelial cell adiponectin-
receptor 1 expression [23]. A higher visceral-to-subcutaneous 
fat ratio is associated with and predictive for postoperative 
surgical morbidity in Crohn’s disease patients, whereas BMI 
is not [96,97]. In patients with Crohn’s disease, a higher 
visceral fat area is predictive of postoperative recurrence [98] 
and is associated with strictures and fistulas [99]. Pediatric 
IBD patients had 33% more VAT volume than age- and BMI-

matched controls, and in these patients VAT was associated 
with complications of the disease course, for example fistulas, 
fibrosis and need for hospitalization [100]. In contrast, however, 
other studies found that an increased subcutaneous-to-visceral 
fat volume was predictive for postoperative complications after 
bowel resection in Crohn’s disease [101].

It should be noted that earlier reports found increased 
proinflammatory cytokine expression in MAT during TNBS-
induced colonic inflammation in mice, which seemed to be 
mediated via increased substance P-induced neurokinin 1 
receptor expression [102]. Studies in human IBD revealed that 
VAT in Crohn’s disease patients had a more proinflammatory 
gene expression profile as compared to ulcerative colitis [103]. 
Consequently, mesenteric fat has been proposed as a key 
player in Crohn’s disease [104]. Hypertrophic VAT adjacent 
to inflammatory lesions in Crohn’s disease patients exhibits 
proinflammatory gene expression; however, even VAT at sites 
distant from inflammatory lesions shows upregulated expression 
of genes involved in inflammation and immunity, similar to the 
changes observed in the VAT of obese patients [105]. In mice, 
both a high-fat diet and DSS-induced colitis induce similar 

Table 4 (Continued)

Adipokine Organism Sample Disease/Model Effect Net effect Reference

Leptin Mouse Serum Colitis in Gαi2-/- mice ↓ ↓ [56]

DSS-AC ↓ [57]

DSS-AC ↓ [58]

IL-2-/- spont. colitis ↓ [59]

Adiponectin Mouse MAT mRNA DSS-AC, DNBS ↓ ↓ [87]

CTRP-3 Mouse VAT mRNA DSS-CC ↔ ↔ [10]

Leptin Mouse MAT mRNA DSS-AC, DNBS ↓ ?? [87]

VAT mRNA DSS-CC ↑ [10]

Visfatin Mouse VAT mRNA DSS-CC ↔ ↔ [10]

Adiponectin Rat Serum TNBS ↔ ↔ [8]

Leptin Rat Serum TNBS ↔ ?? [8]

TNBS ↑ [60]

Resistin Rat Serum TNBS ↔ ↔ [8]

Visfatin Rat Serum Acetic-acid ind. colitis ↓ ↓ [93]

Adiponectin Rat PAT secretion TNBS ↑ ↑ [76]

TNBS ↑ [7]

MAT secretion TNBS ↔ [7]

Leptin rat PAT secretion TNBS ↑ [76]

TNBS ↑ [7]

MAT secretion TNBS ↔ [7]
Change during colitis: ↓ reduction; ↑ increase; ↔ no change; ?? data contradictory 
RBP-4, retinol binding protein 4; CTRP-3, C1q/tumor necrosis factor-related protein-3; VAT, visceral adipose tissue; MAT, mesenteric adipose tissue; PAT, perinodal 
adipose tissue surrounding mesenteric lymph nodes; UC, ulcerative colitis; CD, Crohn’s disease; Gαi2-/- mice, mice with a targeted mutation in the gene for the G 
protein αi2 subunit causing an inflammatory bowel disorder resembling human ulcerative colitis; IL-2-/- mice, interleukin-2 deficient mice; DSS-AC, acute dextran 
sulfate sodium-induced colitis model; DSS-CC, chronic dextran sulfate sodium-induced colitis model; DNBS, 2,4-dinitrobenzene sulfonic acid-induced colitis model; 
TNBS, 2,4,6-trinitrobenzenesulfonic acid-induced colitis model; spont., spontaneous; ind., induced; sign., significant
Data are organized according to organism (human, human/children, mouse, rat–column 2). Within organism groups, data are organized according to sample 
type (serum, VAT/MAT secretion/mRNA–column 3) followed by adipokines (column 1)
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inflammatory changes in VAT [106]. Interestingly, infliximab 
therapy in Crohn’s disease patients leads to an 18% increase 
in total abdominal fat, although the metabolic profile of these 
patients (glycemia, lipid profile) does not worsen [107]. Since 
VAT has been shown to be a key contributor to metabolic 
disturbances in obese patients [108-110], these results hint at 
potentially different reactions of VAT in autoimmune intestinal 
inflammation as opposed to the proinflammatory changes 
within the adipose tissue seen in obese patients.

Importantly, studies in human IBD revealed that VAT 
in Crohn’s disease with a proinflammatory gene expression 
profile is significantly more colonized by intestinal commensal 
bacteria of type Enterococcus faecalis [103]. In Crohn’s disease, 
as opposed to ulcerative colitis, translocation of intestinal 
bacteria to mesenteric fat depots has been demonstrated, 
leading to increased C-reactive protein secretion in 
systemically relevant levels in these adipocytes [111]. Notably, 
ovalbumin peptides translocate to MAT in healthy mice, 
which is not increased in experimental DSS-induced colitis. 
However, viable translocation of bacteria to MAT does not 
occur in healthy animals, but is increased in chronic DSS-
induced colitis [112].

The importance of an intact intestinal barrier function for 
(intestinal) homeostasis has long been recognized, as has the 
key importance of intestinal (commensal) microbiota in the 
development of intestinal bowel diseases [113-116]. Together 
with accumulating data indicating innate immune responses 
in adipocytes [117-119], VAT is increasingly recognized as 
a key player in the maintenance of homeostasis. MAT from 
Crohn’s disease patients, as well as from mice suffering from 
TNBS-induced colitis, shows increased expression levels 
of PPARγ, farnesoid X receptor, leptin and adiponectin, 
which can be abrogated by probiotic treatment that reduces 
inflammatory activity [120]. Importantly, even without an 
inflammatory stimulus, VAT proinflammatory reactions are 
of physiological relevance in basal (intestinal) homeostasis, 
since an adipocyte-specific reduction of proinflammatory 
signaling in mice (aP2-dnTNF, a mouse model expressing 
a dominant-negative version of TNFα under the control of 
the ap2-promoter; aP2-RID, a mouse model expressing the 
adenoviral RIDα/β protein complex, which inhibits a number 
of proinflammatory signaling pathways under the control of 
the ap2-promoter; and TRE-IκBα, a mouse model expressing 
a mutated functional human IκBα, an inhibitor of the NF-
κB pathway, under the control of a tet-responsive element) 
leads to increased lipid accumulation, glucose intolerance and 
systemic inflammation associated with impaired intestinal 
barrier function via impaired “healthy” adipose tissue 
expansion and remodeling [121]. VAT and leptin increase 
intestinal barrier permeability in rats in vivo without obvious 
inflammatory reactions in the intestine, and in colonic 
epithelial cells in co-culture experiments in vitro via a RhoA-
ROCK-dependent pathway (RhoA, small GTPase protein 
of the Rho family, associated with cytoskeleton regulation; 
and ROCK, rho-associated, coiled-coil containing protein 
kinase) [122]. Other studies demonstrated that increased VAT 
is also associated with increased intestinal barrier permeability 
in healthy women [123].

In summary, accumulating data indicate that, rather than a 
general increase in fat, local fat depots, particularly the visceral 
fat depot, actively participate in intestinal inflammatory 
reactions [124-127]. These results argue against a systemic, 
but in favor of a localized auto-  and paracrine effect of 
adipose tissue on the intestine. While an unequivocal causal 
link between adipocytes, insulin sensitivity and intestinal 
inflammation is missing thus far, these observations provide a 
rationale for a mutual interplay between VAT and the intestine 
with its different compartments. Especially in the light of 
recently emerging exciting data linking visceral obesity and 
intestinal barrier function [121-123], a much deeper analysis of 
innate immune signaling in visceral adipocytes in conditions of 
intestinal health and disease is needed to further characterize 
the important role of VAT in intestinal homeostasis, and 
more generally their key role in the homeostasis of the whole 
organism.

VAT as part of the innate immune system in IBD

Besides its established role as an endocrine organ [128,129], 
the adipose tissue can be regarded as part of the innate immune 
system [2,3,44,130], being activated by inflammatory or 
infectious processes. Moreover, the adipose tissue expresses 
the whole machinery of inflammation and innate immune 
activation, including classical cytokines (IL-1, IL-6, TNFα), 
chemokines [monocyte chemoattractant protein-1 (MCP-1); 
C-C motif chemokine ligand 2], complement components 
(C1q, C3a), TLRs, nucleotide-binding oligomerization 
domain (NOD)-like receptors (NLRs), and C1q/TNF-related 
proteins [130]. Thus, VAT could link innate immune reactions 
during gut inflammation to adjacent adipose tissue alterations 
such as creeping fat [131-134].

TLRs are among the most prominent sensing molecules 
(pattern recognition receptors) recognizing molecular patterns 
(pathogen-associated molecular patterns, PAMPs) derived from 
bacteria and viruses [135,136]. The groups led by Shapiro and 
Scherer [137] were the first to describe a prominent role of the 
TLR4 and TLR2 system in adipocytes. Following these reports, 
adipocytes have been shown [1,137-142] to express all known 
TLRs from TLR1 to TLR9, apart from TLR5 (flagellin receptor), 
and functionality has been demonstrated for all of them 
[1,143]. Table 5 summarizes the currently available data on the 
expression of TLRs and their functional activation by specific 
ligands in adipocytes. These data are complicated by the fact 
that adapter molecule utilization may differ in adipocytes when 
compared to classical immune cells. For example, Poly(I:C) 
signaling via TLR3 requires a Toll/IL-1 receptor-domain-
containing adapter-inducing interferon(TRIF)-independent 
but myeloid differentiation primary response gene 88 
(MyD88)-dependent route [144]. In contrast, LPS signaling 
via TLR4 requires MyD88, myelin and lymphocyte protein 
(Mal) and TRIF, whereas Pam3Cys signaling via TLR2 requires 
MyD88 and Mal, but not TRIF [144]. It has been proposed that 
the TLR system in adipocytes orchestrates the complex process 
of energy utilization in the context of immune responses 



Annals of Gastroenterology 29 

432 T. Karrasch and A. Schaeffler

and immune activation [144,145]. However, since increased 
intestinal permeability leads to a direct exposure of adjacent 
VAT to microbial products, these data at the same time provide 
the molecular basis for IBD-associated inflammation of VAT.

In contrast to TLRs, the NOD-1 and NOD-2 proteins 
represent cytoplasmic receptors (NLRs) of the innate 
immune response. Since NOD-1 and NOD-2 are expressed 
in adipose tissue [146,147], these molecules not only might 
be involved in the pathogenesis of type  2 diabetes mellitus 
and obesity-related inflammation [136,147], but also might 
be activated in response to intestinal inflammation and 
microbial translocation. Activation of NOD proteins by 
NOD-1-specific ligands in adipocytes causes NF-κB p65 
nuclear translocation and subsequent MCP-1, IL-6 and IL-8 
production [147]. These results provide the molecular basis 
for the hypothesis that direct exposure of intestinal adipocytes 
to bacterial peptidoglycans could start the process of adipose 
tissue inflammation during gut inflammation. NLR protein-3 
(NLRP3) represents an innate immune sensor, and its 
activation by microbial or endogenous danger signals causes 
caspase-1 activation and production of proinflammatory 
cytokines such as IL-1 and IL-18 [148]. NLRP3 activation by 
endoplasmic reticulum stress in adipocytes increases IL-1 
expression and secretion [149], whereas repressors of NLRP3 
reduce adipose tissue inflammation [150]. In mice deficient in 
NLRP3 expression, the defective inflammasome compartment 
was accompanied by reduced MCP-1 expression in adipocytes 
[148]. However, in spite of the well-known proinflammatory 
effects of a high-fat diet, such as adipose tissue macrophage 
infiltration, NLRP3 expression was not modified by a high-fat 
diet [142].

In summary, intestinal adipocytes residing within the 
VAT adjacent to inflamed gut express major functional 
components of the innate immune recognition system, such 
as TLRs and NODs/NLRPs. Consequently, visceral adipocytes 
are able to sense a wide variety of microbial components 
that cross the disturbed intestinal barrier seen in IBD [131]. 
Thus, the observed inflammatory transformation of VAT 

seems to be a consequence, rather than the cause of IBD. The 
physiological meaning behind this mechanism is most likely 
to provide an additional antimicrobial barrier surrounding 
the affected gut. This adipose tissue barrier might reduce the 
risk of intestinal perforation, bacterial translocation to the 
peritoneum and finally, systemic inflammation and sepsis 
[112]. Remarkably, a recent study published in Science in 
2015 demonstrated that adipocytes protect against invasive 
bacterial infection by secreting antimicrobial peptides 
such as cathelicidin [117,151]. Thus, whereas VAT mass 
is clearly associated with obesity-related inflammation, 
insulin resistance and type  2 diabetes mellitus [152], intra-
abdominal fat could be of benefit in IBD [103,112]. Whether 
viable bacteria are able to reside within adipocytes, and if so 
for how long, remains an additional important and unsolved 
question [103,153].

Fig. 1 depicts this hypothesis regarding the role of inflamed 
VAT in IBD. Because of the increased permeability of the 
mucus and epithelium, microbes and toxins are able to cross 
the mucus and epithelial barriers, which represent the first 
and second barrier. Subsequently, PAMPs are recognized by 
TLRs and NLRs in lamina propria mononuclear cells and in 
adipose tissue. Activation of TLRs and NLRs causes adipose 
tissue inflammation, hypertrophy and finally the formation 
of creeping fat. This altered adipose tissue releases cytokines, 
adipokines, chemokines, complement factors, antimicrobial 
peptides, and CTRPs, thus providing an additional barrier of 
local defense.

Concluding remarks

Current data suggest an intricate relationship between 
intestinal inflammation and adjacent VAT depots. During 
intestinal inflammatory conditions, VAT is not merely a 
passive “bystander”, but actively participates in immune 
responses via the secretion of fat-derived hormones, the so-

Table 5 Summary of data on Toll-like receptor (TLR) expression and activation by specific ligands in adipocytes

Expression Activation Effect Reference

TLR1/2 Pam(3)Cys
MALP-2

Release of IL-6, IL-8, MCP-1, TNFα
Release of MCP-1

[1,139,143,144]
[143]

TLR2/6 MALP-2 Release of IL-6, IL-8, MCP-1 [1,144]

TLR3 Poly (I:C) Release of IL-6, IL8, MCP-1, IP-10
Inhibition of resistin secretion

[1,144,170]
[1]

TLR4 LPS
Unsaturated fatty acids
Unsaturated fatty acids

Release of IL-6, IL-8, MCP-1, TNFα
Inhibition of resistin secretion
Release of MCP-1, resistin

[1,137,139,141,143,144]
[1]

[138]

TLR5 Flagellin No effect [1]

TLR7/8 Poly (U) Inhibition of resistin secretion [1]

TLR9 CpG Inhibition of resistin secretion [1]
TLR, Toll-like receptor; Pam(3)Cys, Pam3Cys-Ser-(Lys) 4, a synthetic triacylated lipopeptide (LP) that mimics the acylated amino terminus of bacterial LPs; 
MALP-2, macrophage activating lipopeptide-2; Poly (I:C), polyinosinic, polycytidylic acid, structurally similar to double-stranded RNA; LPS, lipopolysaccharide; 
Poly (U), poly-uridylic acid, structurally similar to single-stranded RNA; CpG, CpG-Oligodeoxynucleotide; IL, interleukin; MCP-1, monocyte chemoattractant 
protein-1; CCL2, C-C motif chemokine ligand 2; TNFα, tumor necrosis factor α; IP-10, interferon gamma-induced protein 10; CXCL10, C-X-C motif chemokine 10
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called adipokines. Furthermore, adipocytes, via the expression 
of pattern recognition receptors, actively participate in anti-
microbial host defenses in the context of intestinal bacterial 
translocation, as part of the innate immune system. Thus, 
VAT constitutes a barrier against invading pathogens and 
contributes to the homeostasis of the whole organism (Fig. 1). 
This mechanism could protect the organism from local gut 
perforation, local peritonitis, systemic inflammation and 
sepsis. Today, many questions in this innovative field remain 
unanswered. However, with the rapidly growing body of 
evidence, modulators of adipose tissue function and regulators 
of adipokine secretion, as well as modifiers of adipocytic 
pattern recognition molecules, might turn out to be future 
drug targets in the treatment of IBD.
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