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The history of genetics in infl ammatory bowel disease
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Abstract Th e infl uence of genetics in the etiology of infl ammatory bowel disease (IBD) was initially 
demonstrated by epidemiological data, including diff erences in prevalence among diff erent ethnic 
groups, familial aggregation of IBD, concordance in twins, and association with genetic syndromes. 
Th ese early observations paved the way to molecular genetics in IBD, and culminated in the 
identifi cation of nucleotide-binding oligomerization domain containing 2 (NOD2) gene as an IBD 
risk gene in 2001. As in other complex diseases, the advent of Genome Wide Association studies has 
dramatically improved the resolution of the IBD genome and our understanding of the pathogenesis 
of IBD. However, the complexity of the genetic puzzle in IBD seems more pronounced today than 
ever previously. In total, 163 risk genes/loci have been identifi ed, and the corresponding number of 
possible causal variants is challenging. Th e great majority of these loci are associated with both Crohn’s 
disease and ulcerative colitis, suggesting that nearly all of the biological mechanisms involved in one 
disease play some role in the other. Interestingly, a large proportion of the IBD risk loci are also shared 
with other immune-mediated diseases, primary immunodefi ciencies and mycobacterial diseases.
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Introduction

Th ere has been great progress within the fi eld of molecular 
genetics in infl ammatory bowel disease (IBD). Th e early 
epidemiological fi ndings, and especially the observed 
concordance within twin pairs, were the major triggers that 
commenced the successful era of molecular genetics in IBD. 
Even today, these key observations can bring important pieces 
to our understanding of the pathogenesis of IBD.

Genetic epidemiology

Ethnic diff erences

IBD has been associated with considerable geographic and 
ethnic diff erences in incidence and prevalence [1]. Generally, 

the incidence of both Crohn’s disease (CD) and ulcerative 
colitis (UC) has gradually increased since the Second World 
War, especially in northern Europe and North America, 
where the highest incidence rates have been reported [2-7]. 
In several areas with traditionally low occurrence of IBD, 
such as Asia and Africa, increasing fi gures have been reported 
in more recent years [8-11]. Although historical diff erences 
could be infl uenced by a number of factors, including 
diff erent types of biases, these shift s in the risk of developing 
IBD within limited period of times can barely be explained 
by changes in the genome, but rather provide evidence for 
the importance of exposure to environmental factors in the 
disease pathogenesis. On the other hand, the higher risk of 
CD in Jews, and especially in Ashkenazi Jews, seem to persist 
irrespective of geographic location or time period [12-16], 
suggesting that there actually might be ethnic diff erences in 
the genetic predisposition to IBD.

Family studies

Th e familial nature of IBD was fi rst recognized in 
1909 [17,18]. Since then, aggregation of cases of IBD in families 
has been widely confi rmed, with 5-23% of patients with IBD 
having an aff ected fi rst-degree relative (Table 1).

Families with multiply aff ected individuals, so-called 
multiplex families, are most oft en concordant for disease 
type, i.e.  either CD or UC [2], although mixed families are 
reported in approximately one-fourth of the families. Th is was 
an early argument for a model in which some genetic variants 
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are disease specifi c and some variants are common to both 
UC and CD, whereby environmental factors might infl uence 
disease phenotype [33,34]. In recent years, molecular genetics 
has confi rmed that certain genetic variants are shared by CD 
and UC and other variants are disease-specifi c [35]. Th e recent 
reported associations between methylation of specifi c regions 
of the genome and CD [36] may indicate that environmental 
factors could infl uence disease phenotype in IBD by epigenetic 
modifi cations of the genome.

Risk for relatives

Th e greatest risk for developing IBD is having a relative 
with the disease [22,25,26]. On the whole, the estimated 
relative risk to a sibling of a patient with CD is 13-36, and the 
corresponding fi gures are 7-17 for UC [37]. However, from 
a clinical perspective patients ask for the absolute risk and 
not the relative risk of IBD in relatives, especially off spring. 
Th ere are limited studies addressing this clinically relevant 
question, and quoted absolute risks diff er between the studies. 
Overall, a lifetime risk of developing IBD for fi rst-degree 
relatives of a CD patient is 4.8-5.2% for non-Jews and 7.8% 
for Jews [14,26,32]. Th e corresponding fi gures for fi rst-degree 
relatives of a patient with UC are 1.6% for non-Jews and 5.2% 
for Jews [14]. Similarly, the age-corrected risk for off spring 
of a CD patient developing IBD is reported to be 0-10.4% in 

non-Jews and 7.4-15.8% in Jews. Th e equivalent estimates 
for off spring of a patient with UC are 11% and 2.9-7.4%, 
respectively [14,26,32].

Th e risk of IBD in an off spring increases dramatically if both 
parents suff er from IBD. Case series have estimated the risk of IBD 
in the off spring to be 33-52%, depending on follow up [38,39].

Phenotypic similarities within families with IBD

IBD has traditionally been categorized as CD, UC, or IBD 
unclassifi ed [40,41]. However, there are great heterogeneities 
within the three diff erent diagnoses, suggesting the existence 
of subgroups. Epidemiological studies from the mid-1990s 
of familial IBD suggest that there could be a genetic basis 
for these diff erent subgroups. In general, a high degree 
of clinical similarities of IBD has been observed within 
multiplex families, and data are especially striking for CD. 
Several groups have reported concordance for location of 
disease and some also for disease behavior, age at diagnosis, 
extraintestinal manifestations and number of bowel 
resections [26,31,42-44].

Less is known about concordance within families with multiply 
aff ected members with UC. Some agreement in disease extent has 
been reported [42,45], although the observed concordance rates 
were higher within families with CD, which supports a smaller 
contribution of genetics in UC than in CD. It cannot be ruled out 

Table 1 Studies of fi rst-degree relatives in a proband with infl ammatory bowel disease (IBD)

Population Proband with UC Proband with CD

First-degree relatives 
with UC

First-degree relatives with 
IBD

First-degree relatives 
with CD

First-degree relatives with 
IBD

n % n % n % n %

Finnish [19] 436 11.3 436 13.8 257 10.9 257 15.6

Swedish [20] 963 5.7 963 5.7

Swedish [21] 1048 6.9 1048 6.9

Danish [22] 504 7.5 504 8.1 133 2.2 133 5.2

Welsh [23] 139 5.0 139 9.3

UK [24] 469 6.2 469 6.8 424 9.4 424 10.4

UK [25] Not stated 433 11.5

Belgian [26] 640 13.6 640 14.5

Dutch [27] 400 8.0 400 9.5

French [28] 1316 7.5 1316 8.4

Canadian [29] 1000 8.7 Not stated

USA [30] 316 15.5 316 15.8 522 15.1 522 16.7

USA [31] 554 12.2 Not stated

USA [14] 269 7.1 269 8.6 258 7.4 258 14.0

USA [32] 101 8.9 101 13.9 80 16.2 80 22.5

In total 6.2-15.5% 6.8-15.8% 2.2-16.2% 5.2-22.5%
CD, Crohn’s disease; UC, ulcerative colitis
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that the observed concordance in disease characteristics within 
families with IBD is an eff ect of shared environment within the 
families, rather than of genetic predisposition. In contrast to the 
fi ndings in families with IBD, no similarities were identifi ed in a 
study of married couples with CD [39].

Familial and sporadic IBD

Based on the fi ndings in family studies, it has even been 
proposed that familial IBD could be a diff erent entity than 
sporadic disease. However, the evidence for phenotypic 
diff erences between these two groups is sparse, and data 
are inconsistent. An earlier age at onset for familial cases of 
IBD than for patients without any family history of IBD 
is probably the most robust observation [14,28,43,46]. 
Predominance of female cases [21,43,44] and predominant 
transmission from mother to child has also been described, 
especially in CD [21,43,44,47,48]. Based on these fi ndings, 
a female sex-specifi c epigenetic inheritance pattern for CD 
has been proposed, which could contribute to the family-
specifi c risk in CD [48]. Beyond younger age at diagnosis and 
predominance of female cases, diff erences in disease location, 
behavior, extraintestinal manifestations, and disease severity 
between familial and sporadic disease have been proposed. 
However, interpretation of the data is diffi  cult, since defi nitions 
diff er between the studies, univariate analyses have oft en 
been employed and associations between diff erent clinical 
characteristics exist [14,33,43,44,49,50].

Twin studies

In 1988 Tysk et al published the fi rst unbiased study showing 
a higher concordance rate in monozygotic twin pairs than in 
dizygotic twin pairs with CD, refl ecting the infl uence of genetics 
in the disease pathogenesis [51]. Since then, data on twins with 
IBD have been reported from the United Kingdom, Denmark, 
and Germany [52-56]. Th e design of the studies diff ers between 
countries, with the Scandinavian studies being based on the 
national twin registry in each country [51,52]. In contrast, 

the British and German studies were set up by calls for twins 
with IBD using advertisements and newsletters distributed to 
members of the national patient organizations and physicians 
within each country [53-56]. Since the pair concordance 
rate, simply refl ecting the proportion of concordant pairs, 
varies with the thoroughness of ascertainment, the proband 
concordance should be used for comparisons between diff erent 
studies. In the pivotal study by Tysk et al proband concordance 
rates of 58% and 4% in monozygotic and dizygotic twins with 
CD, respectively, were observed, refl ecting the pronounced 
genetic predisposition [51]. Th e corresponding fi gures for 
twins with UC were 6% and 0%, respectively. Orholm et al 
later confi rmed these fi ndings in the Danish cohort, where 
proband concordance rates of 58% and 0% were observed in 
monozygotic and dizygotic twins with CD, respectively [52]. 
Similarly, the corresponding rates in twins with UC were 18% 
and 4%, respectively. Follow ups of the two Scandinavian 
cohorts, extending the observation period in previous healthy 
twin siblings, had only marginal eff ects on the concordance 
rates, since just a few additional twins had been diagnosed 
during the extended observation (Table 2).

Th e population-based data from the Scandinavian 
twin registries are supported by the German and British 
twin studies [53-56]. Overall the concordance is higher in 
monozygotic than in dizygotic pairs, and the diff erence is more 
pronounced in CD than in UC [60], although the British study 
does not include any information on proband concordance 
rates. Recently, the extraordinarily high concordances in 
monozygotic twins have been questioned. Th e very short 
observation periods between the year of birth in national twin 
cohorts and the year of study might have biased the inclusion 
towards twins with early onset disease and possibly with a more 
aggressive disease course, disease phenotypes that could be 
associated with a more pronounced genetic predisposition [58]. 
In contrast to some of the previous family studies in IBD, none 
of the original twin studies have standardized their fi ndings 
according to age. Similarly, the follow-ups of the Scandinavian 
cohorts have studied twin pairs included in the original 
publications only, not extending their analyses to potential 
new twin pairs within the total background population in 
each country. By rerunning the Swedish hospital discharge 

Table 2 Proband concordance (percentage) in diff erent twin cohorts

Cohorts Crohn’s disease Ulcerative colitis

Monozygotic twins Dizygotic twins Monozygotic twins Monozygotic twins

Swedish, 1988 [51] (n=80) 58.3 3.8 6.6 0

Swedish, follow-up, 2000 
[57] (n=80) 62.5 3.8 18.8 0

Swedish, 2011 [58] (n=229) 38.5* 2.0* 14.6* 8.0*

Danish, 2000 [52] (n=103) 58.3 0 18.2 4.5

Danish follow up, 2005 
[59] (n=103) 63.6 3.6 18.2 4.5

German, 2008 [55] (n=189) 52.4 6.7 27.9 3.1
n, number of twin pairs, *Analyses restricted to twin pairs born 1886-1958 (n=179)
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register with the Swedish twin registry and restricting the 
analyses to twins born during the original studied period, that 
is, 1886-1958, the proband concordance rates in monozygotic 
and dizygotic twins with CD were corrected to 38% and 2%, 
respectively [58]. Th e corresponding fi gures for twins with UC 
were 15% and 8%, respectively.

Reported heritability, providing an estimate of the relative 
contribution of genetics to disease etiology, is very high, 
especially in CD, and within the same range as other complex 
diseases with a pronounced genetic contribution. However, 
the fi gures needs to be interpreted with caution, since the 
methods for calculating the heritability vary with the studies, 
and the confi dence intervals when reported are wide. A higher 
relative risk for concordant disease has also been observed in 
dizygotic twins than in ordinary siblings [61]. Th is would point 
towards the contribution of shared internal intrauterine factors 
and/or shared external childhood environment, although the 
conclusion should be treated with some caution, since the 
results are based on small numbers and a less robust method.

Concordance in clinical characteristics has also been 
observed within twin pairs where both twins are aff ected by 
IBD. Th is was fi rst reported in the follow up of the original 
Swedish twin study [57]. Using the Vienna classifi cation [62], 
a remarkable phenotypic similarity was observed statistically 
within twin pairs, considering age at diagnosis, location of the 
disease, and possible progress in disease location, in spite of 
the limited number of concordant monozygotic twins with 
CD. Although the similarity in disease behavior, defi ned as 
non-stricturing non-penetrating disease, stricturing disease 
or penetrating disease, was of borderline signifi cance only, 
concordance in disease behavior has been confi rmed more 
recently in the combined Swedish–Danish twin cohort [63]. 
Th e observation of concordance in disease behavior also 
includes the entity perianal disease. Beyond the similarity 
in clinical characteristics at diagnosis of CD, phenotypic 
concordance in disease behavior and location has also 
been reported longitudinally 10  years aft er diagnosis. Th ese 
fi ndings point towards a pronounced genetic impact on 
clinical characteristics. However, comparison with concordant 
dizygotic twin pairs with CD could not be performed, due to 
low numbers. Th us, it cannot be ruled out that the phenotypic 
similarity within monozygotic twin pairs concordant for CD 
is due to shared internal intrauterine factors and/or shared 
external childhood environment rather than to genetic 
predisposition. Also still to be explored is the possible infl uence 
of disease tolerance, that is, diff erences in susceptibility to 
tissue damage, in contrast to disease resistance [64].

In contrast to the high degree of similarity within pairs 
with CD, phenotypic concordance has been observed for age 
at diagnosis and symptomatic onset only in monozygotic twins 
where both twins are aff ected by UC [57,59,63].

Associated syndromes and diseases with well recognized genetic 
susceptibility

Early observed associations of IBD with genetically determined 
syndromes, including Turner syndrome [65], Hermansky-

Pudlak syndrome [66], glycogen storage disease Ib [67], cystic 
fi brosis [68], and pachydermoperiostosis [69], provided additional 
epidemiological evidence for a role of genetics in IBD. An increased 
prevalence of IBD has also been observed in other infl ammatory 
disorders with strong evidence of genetic susceptibility, like 
ankylosing spondylitis [70], psoriasis [71], multiple sclerosis [72], 
and celiac disease [73]. Recent molecular studies have also revealed 
shared genetic architecture between several chronic immune-
mediated diseases and additional data are awaited [74].

Molecular genetics

Genetics plays an important role in susceptibility to a 
wide variety of complex human diseases (diseases regulated 
by many genes as well as the environment). Almost 100 years 
ago, R.A. Fischer and others reconciled the discrete Mendelian 
inheritance of individual genes with the continuous 
distribution of complex heritable traits. While familiar 
clustering is observed for several of these diseases, only a few 
diseases seem to strictly follow Mendel’s law of inheritance. 
Instead, the majority of diseases involve the action of many 
genes (as well as non-genetic or environmental factors). 
Th ousands of mutations in single genes have been found to 
cause ‘Mendelian disorders’, while attempts to fi nd single 
causative genes for complex diseases have been relatively 
unsuccessful. Th e mode of inheritance clearly demonstrates 
that CD and UC are not simple monogenetic Mendelian 
disorders but genetically complex diseases. Th e observed 
concordance in twin studies and families with IBD were the 
major triggers leading to the application of molecular genetic 
approaches in IBD.

Early linkage studies

Early association studies in the 1980s, using functional 
candidate genes, focused mainly on the HLA genes and 
progressed rather slowly, showing fairly disappointing 
results [75]. Subsequent genome wide scanning based on linkage 
studies, using microsatellite markers of tri- or tetranucleotide 
repeats, identifi ed over-proportional shared regions of the 
chromosomes in aff ected relative pairs. In 1996, the fi rst two 
genome scans using this strategy were published [76,77]. Th e 
fi rst region of replicated linkage, meeting the Lander and 
Kruglyak criteria for signifi cant linkage [78], was located on 
chromosome 16 (IBD1) [37]. Subsequent studies identifi ed 
and replicated areas of signifi cant linkage on additional 
chromosomes subsequently designated as IBD1-9 [37,79]. Some 
disease loci were disease specifi c, like IBD1 showing linkage in 
CD only, and others showed association with both CD and UC.

Nucleotide-binding oligomerization domain containing 2 (NOD2) 
gene

In 2001, two independent groups identifi ed the fi rst CD 
susceptibility gene, NOD2 gene within the IBD 1 locus [80,81]. 
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Hugo et al described the identifi cation of NOD2 using 
positional cloning strategy, while Ogura et al used positional 
plus functional candidate gene approach based on its location 
within the IBD1 locus and structural homology with NOD1. 
Th e NOD2 consists of two amino-terminal caspase recruitment 
domains (CARDs), a centrally located nucleotide binding 
domain and multiple leucine rich repeats (LRRs) at its carboxy-
terminal end. Hugo et al found independent associations 
with CD for three diff erent polymorphisms in NOD2, all 
three located in or near the LRR region [80]. Th ese three 
variants comprise the frameshift  mutation (Leu1007fi nsC), 
which causes a truncated protein transcript, and two non-
synonymous polymorphisms (Arg702Trp and Gly908Arg).

Th e identifi cation of NOD2 was a major breakthrough 
and the independent associations between the three single 
nucleotide polymorphisms (SNPs) and CD have been 
widely replicated. Th e great majority of studies suggest a 
gene dosing eff ect. Carriage of one copy of the risk alleles 
confers to a modest increased risk of developing CD, 
i.e.  2-  to 4-fold. However, having two copies, homozygote 
or combine heterozygote, is associated with a 20- to 40-fold 
increased risk. Th e prevalence of the three major coding 
polymorphisms varies throughout the world, both in the 
healthy background population and in individuals aff ected 
by CD [82,83]. Highest prevalence rates have been reported 
from some parts of Europe and USA, with up to 40% of 
patients with CD carrying at least one of the polymorphisms. 
On the other hand, lower mutation rates have been reported 
from Northern Europe, including Scandinavia and Scotland, 
and NOD2 mutations seem to be almost absent in Asian 
countries like Japan, Korea and China [79,83].

Genome-wide association studies

Th e principal insight learned from the early genetic studies 
in IBD was that there is no single gene (nor even a very 
small number) but rather a large number of involved genes. 
Linkage studies (previously described), lose power rapidly 
with decreasing eff ect of the associated genetic variant. So if 
the genetic basis of IBD consists of dozens or hundreds of 
small eff ects, then linkage would never have the power to 
discover them. Genome-wide association studies (GWAS), 
where one compares the allele frequency of a particular 
variant between unrelated cases and controls, was the next 
step to unravel the genetic architecture of complex diseases 
like IBD. GWAS have successfully been used to discover loci 
with tiny eff ects, thereby confi rming the increasing suspicion 
that individual common risk alleles generally show very weak 
eff ects on disease risk [84].

While the index GWAS identifi ed loci conferring (in 
complex disease genetics terms) larger eff ect sizes they were, 
in retrospect, underpowered to detect loci that confer an odds 
ratio (OR) of disease of <1.2. Reliable identifi cation of such loci 
requires analysis of substantially larger sample sets. In order to 
gain power to index GWAS, individual scans were combined 
into a GWAS meta-analysis. Th ese studies, which typically 
consist of many thousand individuals, confi rmed the suspicion 

that a large number of additional common alleles of small 
eff ect were to be identifi ed.

GWAS for IBD

During the last years, IBD has seen tremendous success in 
the identifi cation of disease susceptibility alleles. Large GWAS 
meta-analyses of CD and UC, that followed a few independent 
GWAS, have dramatically increased our knowledge of IBD 
genetic risk factors. Presently, 163 susceptibility loci are 
described in the published literature [35].

Historically, only 6  months aft er the fi rst GWA study 
was published, Yamazaki and colleagues published the fi rst 
association study for CD. Th is study only included 72,738 
SNPs and identifi ed several associated SNPs in the TNFSF15 
gene [85]. One year later, a larger association study was 
published for CD. Besides the previously known risk locus 
NOD2, this study identifi ed CD-risk variants in the interleukin 
23 receptor (IL23R) gene. Th is was further replicated in 
cohorts of both CD and UC patients that confi rmed ILR23R 
to be a gene common for both IBD subphenotypes [86]. 
Th e fi rst large-scale association study specifi cally targeting 
UC was published in 2008 [87]. Th is study identifi ed three 
loci associated to UC, namely the major histocompatibility 
complex (MHC) region (which confi rmed previous fi ndings), 
the gene encoding the extracellular matrix protein 1 (ECM1), 
expressed in the small and large intestine and involved in 
nuclear factor (NF)-κB activation [88], and the macrophage 
stimulating gene MST1, previously shown to be associated to 
both CD and UC [89].

Studying early-onset presentations of complex disease is 
appealing to geneticists because of the expectation that these 
eff orts have a higher chance of identifying novel risk variants 
that have not been identifi ed in adult-onset studies. Early onset 
IBD shows more extensive disease at onset and rapid progress. 
IBD presents during childhood or adolescence in 15-20% of 
patients [90]. Two recent GWAS carried out exclusively in 
this age group have demonstrated genetic similarities between 
early- and adult-onset IBD [91,92]. In the fi rst study, which was 
a subset of the second GWA study, Kughasan et al replicated 
several known loci from previous adult-onset studies (NOD3, 
IL23R, HLA, TNFSF15) and identifi ed two novel disease-
associated loci, 20q13 and 21q22 [92]. Th e authors were 
not able to pinpoint the causal gene in the 20q13 region but 
considered TNFRSF6B to be the most compelling candidate 
based on the critical role of specifi c polymorphisms within 
genes involved in the TNF pathway in the pathogenesis of IBD. 
Th e 21q22 signal resides in a small region of LD that harbors no 
genes, with the nearest gene being PSMG1. Later, a Canadian 
study for early-onset CD replicated the 20q13 locus but not 
the 21q22 fi nding [93]. A  follow-up early-onset IBD GWAS 
was published by the same group and identifi ed fi ve new loci 
associated with early-onset IBD, including 16p11 close to 
the cytokine gene IL27 [91]. Th is study also replicated 23 of 
32 loci previously implicated in adult-onset CD and 8 of 17 
loci implicated in adult-onset UC, which highlights the close 
pathogenetic relationship between early- and adult-onset IBD.
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In 2011, GWAS had identifi ed 41 loci signifi cantly 
associated to CD [87]. When combining previous GWAS into a 
meta-analysis, including a total of 22,027 CD cases and 29,082 
controls, another 30 signifi cantly associated loci were found, 
which adds up to a total of 71 loci, explaining 23.3% of the 
estimated heritability for CD [94]. Following in silico analyses 
and manual curation a number of positional candidate genes 
were identifi ed as being of interest, including SMAD3, ERAP2, 
IL10, IL2RA, TYK2, FUT2, DNMT3A, DENND1B, BACH2 
and TAGAP [94]. A few independent studies had at the same 
time identifi ed 18 loci signifi cantly associated to UC. Th is was 
followed by a meta-analysis including previous independent 
studies, including a total of 16,000 cases with UC and 32,000 
controls. In total, 29 additional loci for UC were identifi ed 
from this eff ort, increasing the number of known UC loci 
to 47, with an estimated heritability explained of 16%. Aft er 
annotating associated regions using a gene relationship across 
implicated loci pathway analysis, expression quantitative 
trait loci data and correlations with non-synonymous SNPs, 
several candidate genes, including IL1R2, IL8RA-IL8RB, 
IL7R, IL12B, DAP, PRDM1, JAK2, IRF5, GNA12 and LSP1, 
were identifi ed, providing potentially important insights into 
disease pathogenesis [95].

Only a year later, the International IBD Genetics 
Consortium (IIBDGC) expanded the breadth of these analyses 
reporting one of the largest meta-analyses ever performed, 
based on 75,000 IBD (UC and CD) cases and controls including 
data from 15 diff erent GWAS for UC and CD. Th is study also 
included additional typing on the immunochip, an array 
specifi cally designed to capture variation at 200 known risk loci 
for 12 common autoimmune diseases [35]. From this study, 71 

new causative regions were identifi ed, which brought the total 
number of independent IBD risk loci to 163, far more than 
reported for any other complex disease. For the 163 confi rmed 
IBD loci, 110 appear to be relevant to both CD and UC, 23 
show risk eff ects that are UC-specifi c and the remaining 30 are 
CD-only loci. Th e individual gene and causal variant are yet to 
be explored in many of these loci and even less is known about 
their functional implications. Fig. 1 summarizes a number of 
the confi rmed common and disease specifi c loci, represented 
by lead gene name, according to pathway. Interestingly, 43 of 
these 53 disease specifi c loci show the same direction of eff ect 
in both CD and UC, suggesting that nearly all of the biological 
mechanisms involved in one disease play some role in the other. 
One intriguing exception is NOD2, which still represents the 
strongest causal gene in CD but shows signifi cant protective 
eff ects in UC, an observation that may refl ect biological 
diff erences between the two diseases.

Many IBD-associated genes are involved in T-cell 
diff erentiation (for example cytokines IL21, IL10, IFNG. and 
cytokine receptor IL7R). Some of them are more specifi cally 
associated with the IL23R pathway (IL23R, JAK2, STAT3, IL12B, 
and PTPN2), involved in the maintenance of TH17 cells and in 
several other diseases. TH17 cells are thought to coordinate defence 
against specifi c pathogens and mediate infl ammation [96], 
and the original identifi cation of IL23R as an IBD risk factor 
shattered the paradigm that CD and UC were primarily TH1 and 
TH2 –mediated diseases, respectively [86]. TNF-signaling genes 
(TNFRSF9, TNFRSF14, and TNFSF15) are also well represented 
among IBD genes. Th ese genes encode proteins with various 
immune eff ects including systemic infl ammation and activation 
of infl ammatory transcription factor NF-κB. As predicted from 
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Figure 1 Infl ammatory bowel disease (IBD) loci, represented by lead gene name, according to pathway. Loci associated with infl ammatory bowel 
disease are shown in black, Crohn’s disease (CD) in blue and ulcerative colitis (UC) in green
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their close clinical relationship, many susceptibility loci have 
been shown to be shared between CD and UC.

Th e additional typing on the immunochip, which is a 
custom-made chip that includes 200,000 SNPs relevant to 
multiple diff erent immune-mediated diseases including 
UC and CD, discovered that a large portion of IBD risk loci 
are shared with other complex immune-mediated diseases 
(particularly ankylosing spondylitis and psoriasis), primary 
immunodefi ciencies and mycobacterial disease, pointing to an 
essential role for host factors involved in defense against infection 
in IBD [35]. Th ese fi ndings point towards shared pathogenic 
mechanisms between ‘distinct’ diseases and confi rmed previous 
reported epidemiologic overlap between IBD and other immune-
mediated diseases [97-99], and observed genetic overlap in 
GWA-based studies [100-103]. However, the resolution of 
the immunochip study revealed that there is a high degree of 
complexity of this genetic architecture. Th e genetic overlap 
does not necessarily consist of a shared loci for which the same 
SNP or haplotype confer to increased risk for more than one 
immune-mediated disease. Instead, the same SNP or haplotype 
might confer to increased risk for one disease but may be 
protective for another, alternatively the overlap might be caused 
by diff erent haplotypes within the loci [104]. Th e associations 
with gene coding for proteins involved in autophagy and innate 
immunity point towards the importance of defective processing 
of intracellular bacteria in CD. Th e genetic overlap between 
CD and susceptibility to infection with Mycobacterium leprae is 
particularly intriguing. A total of seven out of eight susceptibility 
loci, including NOD2, IL23R, RIPK2 and TNFSF15, for infection 
with Mycobacterium leprae have also been associated with CD, 
although with genetic eff ects in diff erent directions for some of 
these associations. It is still to be explored whether this shared 
immunogenetic risk profi le underpins a true causative role for 
mycobacteria in CD, or rather represent the result of convergent 
evolutionary adaptations to several pathogens.

Future aspects

In spite of the dramatic progress within molecular genetics 
in recent years, some of the key epidemiological observations 
are still unanswered. Based on analyses of the DNA sequence, 
the observed high heritability in IBD is only partly understood. 
Future fi ne-mapping eff orts of identifi ed loci are awaited. At 
the present, a transition from GWAS-style date (which only 
studies a subset of common variation) to complete genome 
sequencing is enabled by the decreased cost of sequencing 
[105]. Sequencing has the potential to enable the wide 
spectrum of variation beyond the common alleles targeted by 
GWAS. Possible contributions of other molecular mechanisms 
of heritability, such as epigenetics, are still largely undiscovered 
and need to be explored. Similarly, the pronounced phenotypic 
similarities within multiplex families and especially within 
concordant monozygotic twin pairs with CD suggest that 
genetics also infl uences the phenotype of the disease. Patients 
with IBD have so far not benefi ted from the scientifi c progress 
within molecular genetics, but clinical applications are 

awaited. Up until now, it has been diffi  cult to establish any 
fi rm genotype–phenotype associations beyond NOD2, but 
analyses addressing possible contribution of other loci based 
on data generated by typing on the immunochip are under 
way. Similarly, genetic models for predicting disease diagnosis, 
CD vs. UC, or even phenotypic subcategories of these two 
diagnoses are expected within the near future. Preliminary data 
also suggest that genetic analyses might be used for prediction 
models of treatment response in the future. Th e IIBDGC’s 
study on the risk of colectomy in acute severe UC might be 
the most promising example, where an association between 
rs2403456 (11p15.3) and colectomy has been reported [106]. 
Future longitudinal studies with periodic measurements in 
subjects at high risk, that is siblings and off spring below or 
around the peak age of onset of IBD, as well of treatment naïve, 
newly diagnosed patients will probably become important 
tools to elucidate the genetic and environmental interactions 
underlying these archetypal complex diseases.
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