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Use of artificial intelligence for the detection of Helicobacter pylori 
infection from upper gastrointestinal endoscopy images: an 
updated systematic review and meta-analysis

Om Parkasha, Abhishek Lala, Tushar Subashb, Ujala Sultanb, Hasan Nawaz Tahirc, Zahra Hoodbhoyd, 
Shiyam Sundarc, Jai Kumar Dasd

The Aga Khan University, Karachi, Pakistan

Background Helicobacter pylori (H. pylori) infection is associated with various gastrointestinal 
diseases and may lead to gastric cancer. Currently, endoscopy is the gold standard modality used for 
diagnosing H. pylori infection, but it lacks objective indicators and requires expert interpretation. 
In the past few years, the use of artificial intelligence (AI) for diagnosing gastrointestinal 
pathologies has increased tremendously and may improve the diagnostic accuracy of endoscopy 
for H. pylori infection. This study aimed to evaluate the diagnostic accuracy of AI algorithms for 
detecting H. pylori infection using endoscopic images.

Methods Three investigators searched the PubMed, CINHAL and Cochrane databases for studies 
that compared AI algorithms with endoscopic histopathology for diagnosing H. pylori infection 
using endoscopic images. We assessed the methodological quality of studies using the QUADAS-2 
tool and performed a meta-analysis to estimate the pooled sensitivity, specificity, and accuracy of 
AI for detecting H. pylori infection.

Results A total of 11 studies were identified that met our inclusion criteria. All were conducted 
in different countries based in Asia. Our meta-analysis showed that AI had high sensitivity (0.93, 
95% confidence interval [CI] 0.90-0.95), specificity (0.92, 95%CI 0.89-0.94), and accuracy (0.92, 
95%CI 0.90-0.94) for detecting H. pylori infection using endoscopic images. However, there 
was also high heterogeneity among the studies (Tau2=0.87, I2=76.10% for generalized effect size; 
Tau2=1.53, I2=80.72% for sensitivity; Tau2=0.57, I2=70.86% for specificity).

Conclusion This systematic review and meta-analysis showed that AI had high diagnostic 
accuracy for detecting H. pylori infection using endoscopic images.
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Introduction

Helicobacter pylori (H. pylori) infection is among the 
most common gastrointestinal pathologies and affects more 
than half of the global population [1]. H. pylori is associated 
with various gastrointestinal diseases, such as peptic ulcer 
disease, gastritis, mucosa-associated lymphoid tissue (MALT) 
lymphoma, and gastric adenocarcinoma [2]. If left untreated, 
H. pylori infection can lead to gastric metaplasia, chronic 
gastric atrophy, and gastric carcinomas. According to the 
International Agency for Cancer Research, H. pylori has been 
categorized as a class 1 carcinogen [3]. Hence, the eradication of 
H. pylori holds vital significance in terms of mitigating the risk 
of gastric cancer. However, the diagnosis of H. pylori infection 
is challenging, as it requires invasive or noninvasive methods 
that have limitations in terms of accuracy, cost, availability, and 
patient compliance.

aSection of Gastroenterology, Department of Medicine (Om Parkash, 
Abhishek Lal, Tushar); bMedical College (Subash, Ujala Sultan); 
cDepartment of Community Health Sciences (Hasan Nawaz Tahir, 
Shiyam Sundar); dDepartment of Paediatrics and Child Health (Zahra 
Hoodbhoy, Jai Kumar Das), The Aga Khan University, Karachi, Pakistan

Conflict of Interest: None

Correspondence to: Om Parkash, The Aga Khan University, Faculty 
Office Building, National Stadium Road, The Aga Khan University, 
Karachi, 75500 Pakistan, e-mail: om.parkash@aku.edu

Received 22 April 2024; accepted 11 July 2024;  
published online 20 October 2024

DOI: https://doi.org/10.20524/aog.2024.0913

This is an open access journal, and articles are distributed under 
the terms of the Creative Commons Attribution-NonCommercial-
ShareAlike 4.0 License, which allows others to remix, tweak, and build 
upon the work non-commercially, as long as appropriate credit is given 
and the new creations are licensed under the identical terms

Abstract



2 O. Parkash et al

Annals of Gastroenterology 37 

Invasive methods include biopsy and a urease test, which 
involve taking tissue samples from the stomach and testing 
them for the presence of H. pylori or its urease enzyme. 
These methods are considered the gold standard for the 
diagnosis of H. pylori infection, but they are expensive, time-
consuming, and may cause complications such as bleeding 
and perforation [4]. Endoscopy involves visual inspection 
of the gastric mucosal lesions in doubt, during which biopsy 
samples are taken and undergo histopathological analysis 
for definitive diagnosis. Endoscopic features associated with 
H. pylori infection include erythema, atrophy, mucosal folds, 
ulcerations, and nodularity [5]. Noninvasive methods include 
serology and urea breath test, which detect the antibodies or 
the urea metabolites of H. pylori in the patients’ blood or breath 
samples. These methods are simple, convenient and widely 
available, but they have drawbacks that include low specificity, 
cross-reactivity, and inability to distinguish between current 
and past infection.

Endoscopic features used to identify potential cases of 
H. pylori infection lack objective indicators, with possible 
variance in terms of interobserver and intraobserver 
reliability for visual inspection of endoscopic images. Expert 
gastroenterologists and hepatologists may accurately recognize 
endoscopic images for H. pylori infection; however, amateur 
specialists need a considerable amount of time to execute 
this task precisely. Moreover, there are no uniform features 
associated with the detection of H. pylori infection, and hence 
no established modalities for diagnosing H. pylori infection 
through endoscopic examination [6]. The final diagnosis of the 
lesions is based on a histopathological analysis of the biopsy 
sample. To overcome such challenges, there has been a recent 
surge in interest in utilizing artificial intelligence (AI).

Recently, AI has emerged as a promising tool to assist 
endoscopists in the detection and characterization of 
gastrointestinal lesions. AI can analyze endoscopic images 
using deep learning algorithms that can learn from large 
datasets and perform tasks such as classification, segmentation 
and localization. AI-based image analysis has shown promise 
in terms of its diagnostic capacities, including the evaluation 
of endoscopic images for the detection of H. pylori infection. 
As a result, its use in patients suspected of suffering from such 
infection has increased.

Several studies have reported the application of AI for the 
detection of H. pylori infection from upper gastrointestinal 
endoscopy images using various modalities, such as white-
light endoscopy, narrow-band imaging, and magnifying 
endoscopy [7,8]. These studies have shown that AI can achieve 
high accuracy and sensitivity in identifying H. pylori infection 
from endoscopic images, and can also differentiate between 
active and inactive infection. Moreover, these studies have 
demonstrated that AI can reduce interobserver variability 
and improve endoscopists’ diagnostic confidence. Keeping 
this in mind, this systematic review and meta-analysis aimed 
to evaluate the accuracy of AI in the diagnosis of H. pylori 
infection using endoscopic images. The findings of this 
research could have a significant impact on the diagnosis and 
treatment of H. pylori infection.

Material and methods

This systematic review has been registered with PROSPERO 
(CRD42023437688). We followed the Preferred Reporting 
Items for Systematic Review and Meta-Analysis (PRISMA) 
guidelines for diagnostic test accuracy for reporting in this 
study [9].

Eligibility criteria and search strategy

In this systematic review, we included all observational 
studies that aimed to detect H. pylori infection based on upper 
gastrointestinal endoscopy utilizing AI algorithms, compared 
to a reference standard (specialist opinion, and laboratory 
investigations). For the literature search, no restrictions were 
applied to the type of algorithms used, or the age at which 
H. pylori infection was diagnosed. Studies that diagnosed 
gastrointestinal pathologies other than H. pylori infection, 
or were published in languages other than English, were 
excluded from this review. Review studies, letters to the editor, 
conference proceedings, scientific reports and opinions were 
also excluded, as were studies conducted on animal or non-
human subjects.

We used PubMed, CINHAL, and Cochrane as databases for 
our literature search, to identify articles published up to August 
2023. The search terms used were “Artificial Intelligence”, 
“Algorithms, “Machine Learning”, “Deep Learning”, 
Supervised Machine Learning, “Unsupervised Machine 
Learning”, “Helicobacter Pylori”, “H. Pylori”, “Endoscopy”, 
“Gastro*”, “Peptic Ulcer”, “Cancer”, “Carcinoma”, “Endoscopy”, 
“Diagnosis”, “Sensitivity”, “Specificity”, “Accuracy”, and “Area 
Under Curve”. The complete search strategy used is available 
in the supplementary section. The initial list of articles was 
imported to EndNote and duplicates were removed.

Screening and data extraction

Three authors (AL, TS, and US) independently screened 
the search results for their titles and abstracts to assess their 
potential eligibility in this review. Full texts of the articles 
were then reviewed by the 3 authors to ensure the selection 
of the articles relevant to this review. The bibliographies and 
citations of the included studies were also reviewed to include 
any further studies that might have been missed during the 
electronic search. The entire screening process was performed 
independently by the 3 authors and conflicts were resolved by 
the fourth and fifth authors (HNT and OP).

After the final screening process, data from the included 
studies were entered into a preformed data extraction form 
in MS Word. The data entered included title, name of journal, 
country of publication, study design, study setting, sample 
size, patient characteristics, type of AI algorithms, reference 
standard used, data analysis, and performance metrics 
(specificity, sensitivity, and accuracy), validation of the model, 
and subgroups if mentioned. We included studies in this 



AI detection of H. pylori 3

Annals of Gastroenterology 37

review where the types of AI systems and training data were 
mentioned.

Risk of bias assessment

The risk of bias was assessed by 3 authors (AL, TS, and 
SS) independently using Quality Assessment of Diagnostic 
Accuracy Studies-2 (QUADAS-2), which evaluates 4 domains: 
patient selection, index test, reference standard, and flow and 
timing. Each domain is rated as low risk, high risk, or unclear 
risk of bias or applicability concern. Any discrepancy between 
the reviewers was resolved by discussion or consultation with a 
fourth reviewer (OP).

Statistical analysis

When possible, we constructed 2×2 contingency tables, 
with values such as true positive, false positive, true negative 
and false negative, and used them to calculate sensitivity, 
specificity and accuracy. Data from all the included studies 
were entered into STATA (version  17.0) software, where we 
constructed forest plots and receiver operating characteristic 
(ROC) curves, using the sensitivity, specificity and accuracy 
of the studies. The subgroup analyses were conducted based 
on the Quality of Study, Study Format, Number of Patients, 
Published Year, and Type of AI.

Results

Our search strategy yielded an initial count of 4118 research 
papers returned by title/abstract searches. Of these 4118 articles, 
127 duplicates were removed and a further 3991 research 
papers were excluded. A  total of 11 studies were included in 
this systematic review and meta-analysis, as presented in Fig. 1.

Of the 11 studies [7,8,10-18], 6 were retrospective 
cohort studies [8,11,13,15,17,18], 4 were prospective cohort 
studies [7,10,14,16], and 1 study was a clinical trial [12] 
(Table 1). Most of the studies were from high-income countries, 
mainly Japan (n=6), followed by China (n=2), Malaysia (n=1), 
Korea (n=1), and Taiwan (n=1). All of the included studies 
performed a diagnostic analysis of AI’s accuracy in detecting 
H. pylori infection using endoscopic images (n=11). The 
results of the AI-based diagnostic models were compared with 
histopathological analysis via biopsy.

Methodological quality of studies

Of the 11 studies included in the final analysis, 10 studies 
showed a low risk of bias; however, 1 study was found to have a 
high risk of bias (Fig. 2).

Meta-analysis

The meta-analysis entailed the computation of 
sensitivity, specificity and accuracy, based on the data 
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extracted from the included studies. The pooled estimates 
for the sensitivity and specificity of AI for diagnosing 
H. pylori infection via endoscopic images were found to 
be 0.90  (95% confidence interval [CI] 0.80-0.95), and 
0.92 (95%CI 0.88-0.95).

Heterogeneity

The assessment of heterogeneity among the included 
studies was conducted using between-study heterogeneity 
statistics, found to be as: generalized heterogeneity: Tau2=0.87, 
I2=76.10%, sensitivity heterogeneity: Tau2=1.53, I2=80.72%, 
specificity heterogeneity: Tau2=0.57, I2=70.86%. These statistics 
indicate moderate to high heterogeneity across the studies 
concerning diagnostic accuracy, as illustrated by the forest plot 
in Fig. 3. The summary ROC curve of the included studies is 
presented in Fig. 4.

Subgroup analysis

Quality of study

The investigation into between-study heterogeneity 
statistics revealed a moderate level of heterogeneity across 
the studies, as indicated by a generalized Tau2 of 0.87 and an 
I2 value of 76.10%. The sensitivity and specificity analyses 
demonstrate high values of 0.80 and 0.71, respectively. The LR 
test comparing the random-effects model with the fixed-effects 

model yielded a statistically significant chi-squared value of 
162.87, with 3 degrees of freedom and a P<0.001, suggesting 
the superiority of the random-effects model for this meta-
analysis.

The study-specific test accuracy was further stratified 
based on the level of disease severity. Gastritis includes 
early-stage infection, mild gastritis and cases without 
significant gastric lesions, while peptic ulcer, atrophic 
gastritis, MALT lymphoma or cancer were considered as 
more severe. For studies focused on gastritis [8,10-18], the 
summary estimates reported a sensitivity of 0.90  (95%CI 
0.80-0.95) and specificity of 0.92  (95%CI 0.88-0.95). In 
contrast, Nakashima et al 2018 [7], representing peptic 
ulcers, atrophic gastritis, MALT lymphoma, or cancer, 
exhibited a sensitivity of 0.97  (95%CI 0.83-1.00) and a 
specificity of 0.87 (95%CI 0.69-0.96). The overall summary 
estimates for both categories were consistent, with a 
sensitivity of 0.90  (95%CI 0.80-0.95) and specificity of 
0.92  (95%CI 0.88-0.95). This analysis suggests that the 
diagnostic accuracy of the test remains robust across 
different disease categories (Supplementary Fig. 1).

Study format

The examination of between-study heterogeneity statistics 
revealed a moderate level of heterogeneity among the studies, 
with a generalized Tau2 of 0.87 and an I2 value of 76.10%. 
Sensitivity and specificity were notably high at 0.81 and 
0.70, respectively. The LR test comparing the random-effects 
model with the fixed-effects model yielded a significant chi-
squared value of 162.87, 3 degrees of freedom, and a P<0.001, 
supporting the preference for the random-effects model in this 
meta-analysis.

The study-specific test accuracy was further dissected based 
on the study design, distinguishing between prospective and 
retrospective studies. In the prospective studies [7,10,12,16], 
the summary estimates report a sensitivity of 0.90  (95%CI 
0.80-0.95) and specificity of 0.92  (95%CI 0.88-0.95). For 
retrospective studies [8,11,13-15,17,18], similar summary 
estimates of sensitivity (0.90, 95%CI 0.80-0.95) and specificity 
(0.92, 95%CI 0.88-0.95) were observed (Supplementary Fig. 2). 
The overall summary estimates for both prospective and 
retrospective studies were consistent, further affirming the 
robustness of the diagnostic accuracy across different study 
designs.

Number of patients

The study-specific test accuracy analysis, focusing on absolute 
measures, provides insights into sensitivity and specificity 
across different subgroups based on the number of patients. 
For studies with more than 500 patients, Itoh et al 2018 [10] 
reported an estimated sensitivity of 0.86  (95%CI 0.75-0.93) 
and specificity of 0.86  (95%CI 0.77-0.93). Similarly, Seo et al 
2023 [13], Zhang et al 2023 [17], and Zheng et al 2019 [18] found 
varying but favorable sensitivity and specificity estimates. The 
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Figure 3 Forest plot of sensitivity and specificity of different studies using artificial intelligence for the detection of Helicobacter pylori infection
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Figure 4 Summary receiver operating characteristic (SROC) curve 
with 95% confidential interval for predictions of artificial intelligence 
models for detecting Helicobacter pylori infection

summary for this subgroup indicates an overall sensitivity of 
0.90 (95%CI 0.80-0.95) and specificity of 0.92 (95%CI 0.88-0.95) 
(Supplementary Fig. 3).

In the subgroup with fewer than 500  patients, Lin et al 
2023 [11], Nakashima et al 2018 [7], Nakashima et al 2020 [12], 
Shichijo et al 2017 [14], Yacob et al 2023 [8], Yasuda et al 
2020 [15], and Yoshii et al 2020 [16] present diverse sensitivity 
and specificity estimates. Notably, Lin et al 2023 [11] showed 

perfect sensitivity (1.00) and high specificity (0.91). The 
summary for this subgroup reports an overall sensitivity of 
0.90 (95%CI 0.80-0.95) and specificity of 0.92 (95%CI 0.88-0.95).

The overall summary across all studies, irrespective 
of the number of patients, yields an estimated sensitivity 
of 0.90  (95%CI 0.80-0.95) and specificity of 0.92  (95%CI 
0.88-0.95). These findings underscore the consistency of 
test accuracy measures across subgroups, reinforcing the 
robustness of the meta-analysis results in evaluating diagnostic 
performance within varying patient cohorts.

Published year

The examination of between-study heterogeneity statistics 
reveals a moderate level of heterogeneity across the included 
studies, as indicated by a generalized Tau2 of 0.87 and an I2 value 
of 76.10%. The sensitivity and specificity analyses show high 
values of 0.80 and 0.70, respectively. The LR test comparing 
the random-effects model with the fixed-effects model yielded 
a statistically significant chi-squared value of 162.87, with 3 
degrees of freedom and a P<0.001, suggesting that the random-
effects model is more appropriate for this meta-analysis.

Further exploration into study-specific test accuracy, 
categorized by the publication year, reveals varying estimates 
for sensitivity and specificity. Studies conducted before 
2020 [7,10,14,18], exhibit favorable sensitivity and specificity 
values, contributing to an overall summary estimate of sensitivity 
at 0.90  (95%CI 0.80-0.95) and specificity at 0.92  (95%CI 
0.88-0.95). Studies conducted after 2020 [8,11-13,15-17], 
present varying but generally high sensitivity and specificity 
estimates. The summary for this subgroup also reports an 
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overall sensitivity of 0.90 (95%CI 0.80-0.95) and specificity of 
0.92 (95%CI 0.88-0.95) (Supplementary Fig. 4). The analysis by 
the publication year suggests consistent test accuracy measures 
across studies, emphasizing the robustness of the findings 
across different timeframes.

Type of AI

The examination of between-study heterogeneity statistics 
reveals a moderate level of heterogeneity across the included 
studies, as indicated by a generalized Tau2 of 0.87 and an I2 value 
of 76.10%. The sensitivity and specificity analyses show high 
values of 0.81 and 0.70, respectively. The LR test comparing 
the random-effects model with the fixed-effects model yields 
a statistically significant chi-squared value of 162.87, with 3 
degrees of freedom and a P<0.001, suggesting that the random-
effects model is more appropriate for this meta-analysis.

Further exploration into study-specific test accuracy, 
categorized by the machine learning algorithm used, reveals 
varying estimates for sensitivity and specificity. Studies utilizing 
convolutional neural networks (CNNs) [7,10-14,17,18], exhibit 
favorable sensitivity and specificity values. The summary 
estimate for this subgroup reports an overall sensitivity of 
0.90  (95%CI 0.80-0.95) and specificity of 0.92  (95%CI 0.88-
0.95). For studies employing a support vector machine (SVM), 
Yasuda et al 2020 [15] reported sensitivity and specificity 
values within the acceptable range, contributing to the overall 
summary estimate of sensitivity at 0.90 (95%CI 0.80-0.95) and 
specificity at 0.92 (95%CI 0.88-0.95). Additionally, Yoshii et al 
2020 [16], using an unspecified machine learning algorithm, 
reports sensitivity at 0.60 (95%CI 0.48-0.72) and specificity at 
0.95 (95%CI 0.92-0.97) (Supplementary Fig. 5). The analysis by 
machine learning algorithm suggests consistent test accuracy 
measures across different algorithms, emphasizing the 
robustness of the findings.

Discussion

This systematic review and meta-analysis aimed to provide 
evidence regarding the comparison of endoscopic and 
histopathological diagnosis versus AI-based diagnosis of the 
endoscopic images. The results of this systematic review and 
meta-analysis confirmed the high performance of AI-based 
methods for H. pylori detection from upper gastrointestinal 
endoscopy images. The pooled estimates for sensitivity and 
specificity were 0.90  (95%CI 0.80-0.95) and 0.92  (95%CI 
0.88-0.95), respectively, with no significant heterogeneity 
among the studies. The area under the summary ROC curve 
was 0.97  (95%CI 0.96-0.99), indicating excellent diagnostic 
accuracy.

AI is an emerging technology that can analyze complex 
and large-scale data, such as endoscopy images, and provide 
automated and objective diagnosis [19]. AI-based methods 
for H. pylori detection mainly use deep learning techniques, 
such as CNNs, to extract features and classify endoscopy 

images into positive or negative for H. pylori infection. 
However, in our review, most of the studies employed deep 
learning algorithms. These methods can achieve high accuracy, 
sensitivity and specificity, comparable or superior to human 
experts [11]. Moreover, AI-based methods can reduce the 
workload and variability of endoscopists and provide real-time 
and noninvasive diagnosis of H. pylori infection. However, it is 
currently not clear how endoscopists and gastroenterologists 
would react and interact with diagnoses suggested by AI. 
Therefore, further studies aiming to assess AI’s implementation 
into clinical practice can be of significant importance and value.

Gastroenterologists are clinicians who use various 
diagnostic techniques, such as endoscopies and colonoscopies, 
to reach a definitive diagnosis. AI-based models have proven to 
possess great specificities and sensitivities towards diagnosing 
various gastric pathologies including gastric polyps, 
Barrett’s esophagus, celiac disease, and inflammatory bowel 
disease [20]. In our review, we found that most of the studies 
used deep learning AI algorithms with pooled sensitivities and 
specificities of 0.90 and 0.92. A similar systematic review and 
meta-analysis conducted by Bang et al found slightly lower 
pooled sensitivity and specificity (0.87 and 0.86) [21]. One 
reason for such differences could be that the AI models used 
are being continuously improved compared with previous 
versions; therefore, better outcomes are being generated.

Given that endoscopic biopsy is an invasive procedure, 
a significant percentage of patients may require fewer 
unnecessary biopsies if a highly accurate AI algorithm is 
applied during endoscopic inspection. However, at the same 
time, current AI models cannot completely eliminate the need 
for the expert opinion of endoscopists and gastroenterologists 
to make the final decision [22]. Presently, AI is rarely tasked 
to assist clinicians in making better clinical decisions and our 
results prove that this needs to be changed.

Although this systematic review and meta-analysis 
thoroughly assessed endoscopic histopathological diagnosis 
versus AI diagnosis for H. pylori infection, our analysis 
had some limitations. Firstly, the studies used different AI 
algorithms, endoscope systems and reference standards, 
which may have introduced heterogeneity and variability in 
the performance and quality of the AI methods. Secondly, 
the studies had different study designs, such as retrospective 
cohort, prospective cohort and clinical trial, which may have 
different levels of validity and reliability and could affect the 
risk of bias and confounding factors. Thirdly, some studies did 
not report some important information, such as the patient 
characteristics, the AI training and testing methods, the 
endoscopic image quality and resolution, and the potential 
sources of error and uncertainty. Fourthly, in this meta-
analysis, we compared the sensitivity, specificity, and accuracy 
of several AI algorithms for identifying H. pylori infection. 
While this technique provides wide clinical insights, it has 
severe technological constraints. Different AI algorithms, 
such as CNNs and SVMs, have been created and evaluated in 
a variety of scenarios. The variability in datasets, preparation 
methodologies and implementation specifics used in 
research makes direct performance comparisons difficult. As 
a result, while our pooled estimates provide relevant clinical 
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information, they should be treated with caution, particularly 
when considering technical evaluations. Lastly, a notable 
constraint of our analysis is the geographic concentration 
of the included studies, which were all carried out in Asian 
nations. Given the large frequency of H. pylori infection in 
Asia, it is reasonable to expect considerable study from this 
region. However, this limits the generalizability of our results 
to non-Asian groups. Genetic, environmental, and behavioral 
differences across populations may influence the performance 
and application of AI systems. To ensure their worldwide 
applicability and efficacy, these AI models must be validated in 
a variety of demographic and geographical scenarios.

In conclusion, this systematic review and meta-analysis 
showed that AI had a high diagnostic accuracy for detecting 
H. pylori infection using endoscopic images. However, there 
was also a high heterogeneity among the studies, due to various 
factors that may affect the performance of AI. Therefore, 
more rigorous and consistent studies are needed to confirm 
and improve the reliability and validity of AI for diagnosing 
H. pylori infection in clinical practice.

Summary Box

What is already known:

•	 Helicobacter pylori (H. pylori) infection is 
responsible for various gastrointestinal (GI) 
pathologies with biopsy being the gold standard 
diagnostic modality

What the new findings are:

•	 Use	 of	 artificial	 intelligence	 to	 detect	 H. pylori 
infection by analyzing upper GI endoscopic images 
may facilitate diagnosis, decreasing the number of 
biopsies performed and reducing patient cost

•	 Such	 technologies	 can	 be	 used	 as	 an	 adjunct	
to decisions taken by doctors to treat patients 
suffering from H. pylori infection
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Supplementary Table 1 PRISMA checklist

Section and 
Topic 

Item 
#

Checklist item Location 
where 
item is 

reported 

TITLE 

Title 1 Identify the report as a systematic review. 1

ABSTRACT 

Abstract 2 See the PRISMA 2020 for Abstracts checklist. 3-4

INTRODUCTION 

Rationale 3 Describe the rationale for the review in the context of existing knowledge. 6-7

Objectives 4 Provide an explicit statement of the objective(s) or question(s) the review addresses. 7

METHODS 

Eligibility 
criteria 

5 Specify the inclusion and exclusion criteria for the review and how studies were grouped for the 
syntheses.

7

Information 
sources 

6 Specify all databases, registers, websites, organisations, reference lists and other sources searched or 
consulted to identify studies. Specify the date when each source was last searched or consulted.

8

Search strategy 7 Present the full search strategies for all databases, registers and websites, including any filters and limits 
used.

8

Selection 
process

8 Specify the methods used to decide whether a study met the inclusion criteria of the review, 
including how many reviewers screened each record and each report retrieved, whether they worked 
independently, and if applicable, details of automation tools used in the process.

8

Data collection 
process 

9 Specify the methods used to collect data from reports, including how many reviewers collected data 
from each report, whether they worked independently, any processes for obtaining or confirming data 
from study investigators, and if applicable, details of automation tools used in the process.

8-9

Data items 10a List and define all outcomes for which data were sought. Specify whether all results that were 
compatible with each outcome domain in each study were sought (e.g. for all measures, time points, 
analyses), and if not, the methods used to decide which results to collect.

8-9

10b List and define all other variables for which data were sought (e.g. participant and intervention 
characteristics, funding sources). Describe any assumptions made about any missing or unclear 
information.

8-9

Study risk of 
bias assessment

11 Specify the methods used to assess risk of bias in the included studies, including details of the tool(s) 
used, how many reviewers assessed each study and whether they worked independently, and if 
applicable, details of automation tools used in the process.

9

Effect measures 12 Specify for each outcome the effect measure(s) (e.g. risk ratio, mean difference) used in the synthesis or 
presentation of results.

-

Synthesis 
methods

13a Describe the processes used to decide which studies were eligible for each synthesis (e.g. tabulating the 
study intervention characteristics and comparing against the planned groups for each synthesis  
(item #5)).

10

13b Describe any methods required to prepare the data for presentation or synthesis, such as handling of 
missing summary statistics, or data conversions.

10

13c Describe any methods used to tabulate or visually display results of individual studies and syntheses. 10

13d Describe any methods used to synthesize results and provide a rationale for the choice(s). If meta-
analysis was performed, describe the model(s), method(s) to identify the presence and extent of 
statistical heterogeneity, and software package(s) used.

10-15

13e Describe any methods used to explore possible causes of heterogeneity among study results (e.g. 
subgroup analysis, meta-regression).

10-15

13f Describe any sensitivity analyses conducted to assess robustness of the synthesized results. -

Reporting bias 
assessment

14 Describe any methods used to assess risk of bias due to missing results in a synthesis (arising from 
reporting biases).

10

(Contd...)
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Section and 
Topic 

Item 
#

Checklist item Location 
where 
item is 

reported 

Certainty 
assessment

15 Describe any methods used to assess certainty (or confidence) in the body of evidence for an outcome. -

RESULTS 

Study selection 16a Describe the results of the search and selection process, from the number of records identified in the 
search to the number of studies included in the review, ideally using a flow diagram.

9-10

16b Cite studies that might appear to meet the inclusion criteria, but which were excluded, and explain why 
they were excluded.

10

Study 
characteristics 

17 Cite each included study and present its characteristics. 24-26

Risk of bias in 
studies 

18 Present assessments of risk of bias for each included study. 10

Results of 
individual 
studies 

19 For all outcomes, present, for each study: (a) summary statistics for each group (where appropriate) 
and (b) an effect estimate and its precision (e.g. confidence/credible interval), ideally using structured 
tables or plots.

24-26

Results of 
syntheses

20a For each synthesis, briefly summarise the characteristics and risk of bias among contributing studies. 9-15

20b Present results of all statistical syntheses conducted. If meta-analysis was done, present for each the 
summary estimate and its precision (e.g. confidence/credible interval) and measures of statistical 
heterogeneity. If comparing groups, describe the direction of the effect.

10-15

20c Present results of all investigations of possible causes of heterogeneity among study results. 10-15

20d Present results of all sensitivity analyses conducted to assess the robustness of the synthesized results. 10-15

Reporting 
biases

21 Present assessments of risk of bias due to missing results (arising from reporting biases) for each 
synthesis assessed.

10-15

Certainty of 
evidence 

22 Present assessments of certainty (or confidence) in the body of evidence for each outcome assessed. -

DISCUSSION 

Discussion 23a Provide a general interpretation of the results in the context of other evidence. 16

23b Discuss any limitations of the evidence included in the review. 17-18

23c Discuss any limitations of the review processes used. 17-18

23d Discuss implications of the results for practice, policy, and future research. 17

OTHER INFORMATION

Registration 
and protocol

24a Provide registration information for the review, including register name and registration number, or 
state that the review was not registered.

7

24b Indicate where the review protocol can be accessed, or state that a protocol was not prepared. 7

24c Describe and explain any amendments to information provided at registration or in the protocol. -

Support 25 Describe sources of financial or non-financial support for the review, and the role of the funders or 
sponsors in the review.

1

Competing 
interests

26 Declare any competing interests of review authors. 1

Availability of 
data, code and 
other materials

27 Report which of the following are publicly available and where they can be found: template data 
collection forms; data extracted from included studies; data used for all analyses; analytic code; any 
other materials used in the review.
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Supplementary Figure 1 Subgroup analysis based on different quality of studies
CI, confidence interval 
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Supplementary Figure 2 Subgroup analysis based on different study formats
CI, confidence interval
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Supplementary Figure 3 Subgroup analysis based on number of patients
CI, confidence interval 
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Supplementary Figure 4 Subgroup analysis based on published years
CI, confidence interval 
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Supplementary Figure 5 Subgroup analysis based on different artificial intelligence models
CI, confidence interval; CNN, convolutional neural network 


